首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The application of electron transfer and dipolar direct current induced collisional activation (ET‐DDC) for enhanced sequence coverage of peptide/protein cations is described. A DDC potential is applied across one pair of opposing rods in the high‐pressure collision cell of a hybrid quadrupole/time‐of‐flight tandem mass spectrometer (QqTOF) to induce collisional activation, in conjunction with electron transfer reactions. As a broadband technique, DDC can be employed for the simultaneous collisional activation of all the first‐generation charge‐reduced precursor ions (eg, electron transfer no‐dissociation or ETnoD products) from electron transfer reactions over a relatively broad mass‐to‐charge range. A systematic study of ET‐DDC induced collision activation on peptide/protein cations revealed an increase in the variety (and abundances) of sequence informative fragment ions, mainly c‐ and z‐type fragment ions, relative to products derived directly via electron transfer dissociation (ETD). Compared with ETD, which has low dissociation efficiency for low‐charge‐state precursor ions, ET‐DDC also showed marked improvement, providing a sequence coverage of 80% to 85% for all the charge states of ubiquitin. Overall, this method provides a simple means for the broadband collisional activation of ETnoD ions in the same collision cell in which they are generated for improved structural characterization of polypeptide and protein cations subjected to ETD.  相似文献   

2.
Electrospray‐generated precursor ions usually follow the ‘even‐electron rule’ and yield ‘closed shell’ fragment ions. We characterize an exception to the ‘even‐electron rule.’ In negative ion electrospray mass spectrometry (ES‐MS), 2‐(ethoxymethoxy)‐3‐hydroxyphenol (2‐hydroxyl protected pyrogallol) easily formed a deprotonated molecular ion (M‐H)? at m/z 183. Upon low‐energy collision induced decomposition (CID), the m/z 183 precursor yielded a radical ion at m/z 124 as the base peak. The radical anion at m/z 124 was still the major fragment at all tested collision energies between 0 and 50 eV (Elab). Supported by computational studies, the appearance of the radical anion at m/z 124 as the major product ion can be attributed to the combination of a low reverse activation barrier and resonance stabilization of the product ions. Furthermore, our data lead to the proposal of a novel alternative radical formation pathway in the protection group removal of pyrogallol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
The collisional activation (CA) mass spectra of the two isomeric [C7H7]+ ions, benzyl and tropyl, have been reassessed. The structure-characteristic feature of their CA mass spectra, the m/z 77:74 abundance ratio, has been confirmed as 3.15 ± 0.2 for benzyl cations and lowered to 035 ± 03 for tropyl ions. Benzyl–tropyl cation mixture analyses were made and were in general agreement with earlier CA results, but still disagree with the results of ion cyclotron resonance experiments. The behavior of toluene molecular ions close to their dissociation threshold to [C7H7]+ + H˙ was examined; for metastable [C7H8]+˙ ions an approximately 55:45 benzyl:tropyl ratio was found. Observations are discussed in relation to photoionization and photoelecrron-photoionization coincidence studies, both of which predict high tropyl ion contents at low energies. However, at the lowest energies attainable in this study the benzyl content failed to fall below 50% and it is concluded that toluene molecular ions do not generate tropyl cations at their dissociation limit.  相似文献   

4.
Upon collisional activation, gaseous metal adducts of lithium, sodium and potassium oxalate salts undergo an expulsion of CO2, followed by an ejection of CO to generate a product ion that retains all three metals atoms of the precursor. Spectra recorded even at very low collision energies (2 eV) showed peaks for a 44‐Da neutral fragment loss. Density functional theory calculations predicted that the ejection of CO2 requires less energy than an expulsion of a Na+ and that the [Na3CO2]+ product ion formed in this way bears a planar geometry. Furthermore, spectra of [Na3C2O4]+ and [39K3C2O4]+ recorded at higher collision energies showed additional peaks at m/z 90 and m/z 122 for the radical cations [Na2CO2]+? and [K2CO2]+?, respectively, which represented a loss of an M? from the precursor ions. Moreover, [Na3CO2]+, [39K3CO2]+ and [Li3CO2]+ ions also undergo a CO loss to form [M3O]+. Furthermore, product‐ion spectra for [Na3C2O4]+ and [39K3C2O4]+ recorded at low collision energies showed an unexpected peak at m/z 63 for [Na2OH]+ and m/z 95 for [39K2OH]+, respectively. An additional peak observed at m/z 65 for [Na218OH] + in the spectrum recorded for [Na3C2O4]+, after the addition of some H218O to the collision gas, confirmed that the [Na2OH] + ion is formed by an ion–molecule reaction with residual water in the collision cell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Previous studies have shown that low‐energy collision‐induced dissociation (CID) of the important sulfonium ion metabolite S‐adenosyl‐L‐methionine (AdoMet, m/z 399) yields five main product ions: an ion at m/z 250 arising from methionine loss; ions at m/z 102 and 298, which arise via cleavage of the γ C? S bond of methionine; and ions at m/z 136 and 264, which arise via loss of protonated and neutral adenine, respectively. These metabolomics studies have, however, either totally ignored the mechanisms that govern the formation of the major product ion at m/z 250 (Gellekink H, van Oppenraaij‐Emmerzaal D, van Rooij A, Struys EA, den Heijer M, Blom HJ. Clin. Chem. 2005; 51: 1487), or have proposed an oxonium ion structure that must arise via a rearrangement involving a 1,2 hydride shift (Cataldi TRI, Bianco G, Abate S, Mattia D. Rapid Commun. Mass Spectrom. 2009; 23: 3465). Here DFT calculations on a model system are used to examine potential mechanisms for the formation of the major product ion of AdoMet. These calculations suggest that a neighbouring group mechanism is preferred over a 1,2 hydride shift mechanism. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Collision‐induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative‐ion mode. Data obtained from several glucosinolates and their isotopologues (34S and 2H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1‐sulfate anion and 1‐thioglucose 2‐sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1‐thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (β‐D ‐Glucopyranose, 1‐thio‐, 1‐[N‐(sulfooxy)benzenecarboximidate] shows a substituent‐group‐specific peak at m/z 152 for C6H5‐C(?NOH)S?, the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C6H5‐C(?S)OSO2?. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

7.
On contrary to the widely accepted conviction that the m/z 93 ion derived from phenol does not react with CO2, we demonstrate that it makes an adduct with CO2 to a small but demonstrable extent. For example, the product‐ion mass spectrum recorded for the m/z 98 ion derived from [2H6]phenol showed a small peak at m/z 142 when CO2 was used as the collision gas. The formation of an m/z 137 adduct ion from the m/z 93 ion (generated either directly from phenol, or indirectly from salicylic acid by in‐source decarboxylation) was demonstrated also by multiple‐reaction‐monitoring tandem mass spectrometric experiments. According to literature, the m/z 93 ion derived from salicylic acid does not undergo CO2 addition because it is deemed to exist only in the phenoxide form. This reaction has been previously proposed as a method for differentiating phenoxide ion from its isomeric hydroxyphenide ions. We propose that the m/z 93 ion, albeit small, exists also as the phenide form together with the predominant phenoxide ion. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
The ratio of the fragment ions at m/z 122 and m/z 123 in the positive ion fast atom bombardment or secondary ion mass spectra of thiamine hydrochloride varies with sample preparation and experimental conditions. For all mass spectra that contained significant abundances of matrix (S) ions [S + H]+, the fragment at m/z 123 is the more abundant of the two ions. If [S + H]+ ions are not observed in the mass spectrum under the conditions selected, the ion at m/z 122 is more abundant. This correlation suggests that hydrogen transfer to the fragment ion occurs in the gas phase, with the composition of the ion-solvent cluster ions in the selvedge region being the key factor. The ratio of the fragment ions at m/z 123 and m/z 122 is thus an indicator of the extent of protonation in the selvedge, the region immediately above the solvent surface created by primary particle bombardment.  相似文献   

9.
The gas‐phase reactions of Aryl―SF5·+ and Aryl―SO2F·+ have been studied with the electron ionization tandem mass spectrometry. Such reactions involve F‐atom migration from the S‐atom to the aryl group affording the product ion Aryl―F·+ by subsequent expulsion of SF4 or SO2, respectively. Especially, the 4‐pentafluorosulfanylphenyl cation 4‐SF5C6H4+ (m/z 203) from 4‐NO2C6H4SF5·+ by loss of ·NO2 could occur multiple F‐atom migration reactions to the product ion C6H4F3+ (m/z 133) by loss of SF2 in the MS/MS process. The gas‐phase reactions of 2,5‐xylylfluoroiodonium (pXyl―I+F, m/z 251) have also been studied using the electrospray tandem mass spectrometry, which involve a similar F‐atom migration process from the I‐atom to the aryl group giving the radical cation of 2‐fluoro‐p‐xylene (or its isomer 4‐fluoro‐m‐xylene, m/z 124) by reductive elimination of an iodine atom. All these gas‐phase F‐atom migration reactions from the heteroatom to the aryl group led to the aryl―F coupling product ions with a new formed CAryl―F bond. Density functional theory calculations were performed to shed light on the mechanisms of these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
The vaginal administration route suffers from relatively low absorption efficiency, which may hinder the identification of the toxicokinetics of curdione in pregnant women. A sensitive analytical method for determining the plasma concentration of curdione was developed and applied in the determination of curdione in pregnant Sprague–Dawley rats as a simulated model. Glimepiride was used as an internal standard and chromatographic separation was achieved on a Capcell Pak C18 MGIII column. A gradient elution profile with 0.5% formic acid (A)–0.5% formic acid–acetonitrile (B) was selected as mobile phase. The selected reaction monitoring mode was used for quantification based on the target fragment ions m/z 237.2 to m/z 135.1 for curdione and m/z 491.3 to m/z 352.1 for the glimepiride. The standard curve was linear over the range of 0.5–500 ng/mL for curdione in rat plasma and yielded a consistent peak pattern, even at the lower limit of quantitation of 0.5 ng/mL. The retention times of curdione and IS were 6.55 and 6.59 min, respectively. The mean recovery of curdione in rat plasma was 95.5–101.1%. The intra‐day and inter‐day precisions were between 2.35 and 9.08%. This LC‐MS/MS method provides a simple and sensitive means for determining the plasma concentration. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The energy dependence of fragmentation in a collision cell was measured for 2400 protonated peptide ions derived from the digestion of 24 proteins. The collision voltage at which the sum of the fragment ion abundances was equal to the remaining parent ion (V 1/2) was the principal measure of fragmentation effectiveness. Each class of peptides was characterized by a linear relation between V 1/2 and m/z whose slope depended on the peptide class and, with little adjustment, intersected the origin. Peptide ions where the number of protons is no greater than the number of arginine residues show the greatest slope, V 1/2/(m/z)=0.0472 (all slopes in units of V Da−1 e). For peptides where the number of protons is greater than the number of arginines, but not greater than the total number of basic residues, the slope decreases to 0.0414 for singly charged ions, 0.0382 for doubly charged, 0.0346 for triply charged, and 0.0308 for more highly charged ions. With one mobile proton, the slope is about 0.029 for singly and doubly charged ions and slightly lower for more highly charged ions. With two or more mobile protons the slope is 0.0207. By removing m/z dependence, the deviation of V 1/2 from a line provides a relative measure of the ease of fragmentation of an ion in each class. This information can guide the selection of optimal conditions for tandem mass spectrometry studies in collision cells for selected peptide ions as well as aid in comparing the reactivity of ions differing in m/z and charge state.  相似文献   

12.
Rhizoma Atractylodes Macrocephala (RAM) is an important traditional Chinese medicinal herb that is used for treatment of dyspepsia and anorexia. The active ingredients, atractylenolide I (AO‐I) and atractylenolide III (AO‐III), were identified by direct‐injection ion trap‐mass spectrometry (IT‐MS) for collecting MSn spectra. The major fragment ions of AO‐I and AO‐III were confirmed by MSn both in negative ion mode and in positive ion mode. The possible main cleavage pathway of fragment ions was studied. The determinations of AO‐I and AO‐III were accomplished by liquid chromatography (LC) with UV and MS. The analytes provided good signals corresponding to the protonated molecular ions [M + H]+ and product ions. The precursor ions and product ions for quantification of AO‐III and AO‐I were m/z 249 → 231 and m/z 233 → 215, respectively, using selected ion monitoring by LC‐IT‐MS. Two methods were evaluated for a number of validation characteristics (repeatability, limit of detection, calibration range, and recovery). MS provides a high selectivity and sensitivity for determination of AO‐III and AO‐I in positive mode. After optimization of the methods, separation, identification and quantification of the two components in RAM were comprehensively tested by HPLC with UV and MS. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Under conditions of collision‐induced dissociation (CID), anions of α‐hydroxycarboxylic acids usually fragment to yield the distinctive hydroxycarbonyl anion (m/z 45) and/or the complementary product anion formed by neutral loss of formic acid (46 u). Further support for the known two‐step mechanism, involving an ion‐neutral complex for the formation of the hydroxycarbonyl anion from the carboxyl group, is herein provided by tandem mass spectrometric results and density functional theory computations on the glycolate, lactate and 3‐phenyllactate ions. A fourth, structurally related α‐hydroxycarboxylate ion, obtained by deprotonation of mandelic acid, showed only loss of carbon dioxide upon CID. Density functional theory computations on the mandelate ion indicated that similar energy inputs were required for a direct, phenyl‐assisted decarboxylation and a postulated novel rearrangement to a carbonate ester, which yielded the benzyl oxide ion upon loss of CO2. Rearrangement of the glycolate ion led to expulsion of carbon monoxide, whereas the 3‐phenyllactate ion showed the loss of water and formation of the benzyl anion and the benzyl radical as competing processes. The fragmentation pathways proposed for lactate and 3‐phenyllactate are supported by isotopic labeling. The relative computed energies of saddle points and product ions for all proposed fragmentation pathways are consistent with the energies supplied during CID experiments and the observed relative intensities of product ions. The diverse reaction pathways characterized for this set of four α‐hydroxycarboxylate ions demonstrate that it is crucial to understand the effects of structural variations when attempting to predict the gas‐phase reactivity and CID spectra of carboxylate ions. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
The rearrangement reactions following electron ionization in a number of aryl substituted conjugated nitriles have been studied using labelled compounds and collisional activation (CA) spectroscopy. The results indicate that α-phenyl cinnamonitriles and 9,10-dihydro-9-cyanophenanthrene rearrange to a common intermediate which loses CH3˙ or CH2CN˙ to give the ions at m/z 190 and 165. The CA spectrum of the deuterated analogue (compound 2) shows that there is a complete hydrogen scrambling prior to the loss of the CH3˙ radical. The fluoroderivatives (compounds 5 and 6) behave similarly to the parent nitrile. The introduction of chlorine or bromine into the aromatic ring alters the fragmentation pattern and the only favoured decomposition pathway is the loss of a halogen radical. The CA spectra of the doubly charged ions at m/z 102 and 88 are also discussed. The CA spectrum of the M +˙ ion 1,1-dicyano-2-phenyl ethylene is characterized by the presence of a rearrangement ion atm/z 103 (PhCN+ ˙).  相似文献   

15.
In studying the metabolic pathways underlying the mechanism of carcinogenesis of the heterocyclic amine of 2‐amino‐3‐methylimidazo[4,5‐f]quinoline (IQ), we recently found a new metabolite which gave an [M + H]+ ion of m/z 217 when subjected to electrospray ionization (ESI) in positive‐ion mode. Following ip injection of this metabolite of m/z 217 (designated as m/z 217) to beta‐naphthoflavone‐treated mice, 57% of the total radioactivity was recovered in a 24‐h mouse urine sample. HPLC separation followed by MS analysis indicates that the urine sample contained m/z 217 (36 ± 3% of total recovered radioactivity) and two other peaks that gave rise to the [M + H]+ ions of m/z 393 (31 ± 4%, designated as m/z 393) and m/z 233 (14 ± 1%, designated as m/z 233). Beta‐glucuronidase treatment of m/z 393 resulted in a radioactive peak corresponding to m/z 217. ESI in combination with various mass spectrometry techniques, including multiple‐stage mass spectrometry, exact mass measurements and H/D exchange followed by tandem mass spectrometry, was used for structural characterization. The urinary metabolites of m/z 217, 393 and 233 were identified as 1,2‐dihydro‐2‐amino‐5‐hydroxy‐3‐methylimidazo[4,5‐f]quinoline, 1,2‐dihydro‐2‐amino‐5‐O‐glucuronide‐3‐methylimidazo[4,5‐f]quinoline and 1,2‐dihydro‐2‐amino‐5,7‐dihydroxy‐3‐methylimidazo[4,5‐f]quinoline, respectively. Our results demonstrated that m/z 217 is biotransformed in vivo to m/z 393 by O‐glucuronidation and to m/z 233 by oxidation. The observation of these more polar metabolites relative to IQ suggests that they may arise from a previously undescribed detoxicification pathway. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Plasma estimation of valaciclovir, an antiviral drug, is challenging due to both in‐vivo and ex‐vivo hydrolysis to active metabolite acyclovir. A simultaneous method is described involving the solid‐phase ion‐exchange extraction procedure requiring 100 μL of plasma volume, a reverse‐phase Lichrosphere RP Select B (125 × 6 mm, 5 μm) column and isocratic mobile phase to achieve the desired chromatographic separation. ESI‐MS/MS multiple reaction monitoring in positive polarity, detected mass pairs for valaciclovir (m/z 325.5 → 152.2), acyclovir (m/z 226.3 → 152.2) and respective internal standards valganciclovir (m/z 307.1 → 220.3) and acyclovir‐d4 (m/z 230.2 → 152.0). Fully fledged method validation was evaluated as per current regulatory requirements and results were deemed acceptable. The plasma samples showed extensive hydrolysis of valaciclovir when collected or processed at room temperature, without buffer stabilization prior to storage at −15°C. Our results showed that using prechilled K3EDTA vacutainers immersed in an iced‐water bath during blood sample collection, and addition of 50% orthophosphoric acid solution to plasma samples prior to storage at −50°C for at least 120 days controlled the hydrolysis of valaciclovir to acyclovir. While monitoring drug absorption into systematic circulation, the valaciclovir to acyclovir formation ratio was improved to 1:20 in healthy volunteers for the first time. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A sensitive and selective liquid chromatography mass spectrometry method for determination of chidamide in rat plasma was developed. After addition of linezolid as internal standard, protein precipitation by acetonitrile–methanol (9:1, v/v) was used as sample preparation. Chromatographic separation was achieved on a Zorbax SB‐C18 (2.1 × 150 mm, 5 µm) column with acetonitrile–0.1% formic acid as mobile phase with gradient elution. An electrospray ionization source was applied and operated in positive ion mode; selective ion monitoring mode was used for quantification using target fragment ions m/z 391.5 for chidamide and m/z 338.5 for the IS. Calibration plots were linear over the range of 10–2000 ng/mL for chidamide in rat plasma. The lower limit of quantification for chidamide was 10 ng/mL. The mean recovery of chidamide in plasma was in the range of 86.6–92.1%. The coefficients of variation of intra‐day and inter‐day precision were both <12%. This method is simple and sensitive and was applied successfully in a pharmacokinetic study of chidamide to rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
Upon collision‐induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2‐ 1,3‐, and 1,4‐benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO2 by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem‐in‐space mass spectrometer, and subjected to collision‐induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO2 loss to produce a peak at m/z 145 for a sodiated arene of formula (Na3C6H4)+. This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(?C6H4CO2Na2)+], which then eliminated CO2 to produce a peak at m/z 122 for the distonic cation (?C6H4Na2)+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Time‐of‐flight secondary ion mass spectrometry (ToF‐SIMS) equipped with a bismuth imaging source and an argon gas cluster ion beam (GCIB) was used to image polished cross‐sections of four automotive multilayer paint samples. Secondary ion mass spectrometry chemical imaging of the individual layers was possible after a GCIB sputter ion dose of (7 × 1015) ions/cm2 was applied for the removal of polishing residue, at which point the chemical composition of the individual clear coats could be distinguished using principal components analysis. For the differentiation of the four clear coat chemistries, only four secondary ion peaks were necessary; C2H5O+ (m/z 45.04), C9H9NO2+ (m/z 163.09), and C10H11NO2+ (m/z 177.10) that appeared to be fragments of the carbamate‐based clear coat, and C7H11+ (m/z 95.09) that was strongly associated with the polyurethane‐based clear coat. Clear identification of the four paint samples based on this short peak list highlights the strength of the SIMS technique as a potential forensic approach to discriminate automotive paints and suggests that many more variables could be included in the multivariate and statistical analysis to differentiate a wider range of clear coat chemistries.  相似文献   

20.
A novel method based on high‐performance ion chromatography inductively coupled plasma mass spectrometry employing strong anion exchange chromatography with HNO3 gradient elution for simultaneous analysis of orthophosphate and myo‐inositol hexakisphosphate (IP6) in soil solution and plant extracts is presented. As inductively coupled plasma mass spectrometry analysis of phosphorus at m/z 31 is hampered by N‐based interferences, 31P was measured as 31P16O+ at m/z 47 employing dynamic reaction cell technique with O2 as reaction gas. Orthophosphate and IP6 were separated within a total chromatographic run‐time of 12 min revealing a limit of detection of 0.3 μmol/L. The coefficients of determination obtained in a working range of 1–100 and 1–30 μmol/L were 0.9991 for orthophosphate and 0.9968 for IP6, respectively. The method was successfully applied to extracts from three different soils as well as root and shoot extracts of Brassica napus L. The precision of three independently prepared soil extracts was in the range of 4–10% relative standard deviation for PO43? and 3–8% relative standard deviation for IP6. Soil adsorption/desorption kinetics for IP6/orthophosphate were performed for investigating the sorption behavior of the two P species in the experimental soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号