首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The evidence for unique effects of eicosapentaenoic acid and docosahexaenoic acid is growing. Further understanding and exploration of their independent effects in the nutraceutical and pharmaceutical industry is calling for the more efficient separation techniques to overcome the equivalent chain length rule of fatty acids. In this study, free eicosapentaenoic and docosahexaenoic acid were successfully separated by pH‐zone‐refining countercurrent chromatography for the first time. The different solvent systems and the influence of retainer and eluter concentration on the separation efficiency were investigated. A two‐phase solvent system composed of n‐heptane/methanol/water (100:55:45, v/v) was selected with 50 mM of trifluoroacetic acid as retainer in the organic phase and 40 mM of ammonium hydroxide as an eluter in the aqueous phase for the separation of 500 mg of free fatty acids from a refined fish oil sample. 79.6 mg of eicosapentaenoic acid and 328.3 mg docosahexaenoic acid were obtained with the purities of 95.5 and 96.9% respectively determined by gas chromatography with mass spectrometry after methyl esterification. The scale‐up separation of 1 g of samples from both refined and crude fish oil after urea complexation were also achieved successfully with a markedly increased concentration 150 mM of retainer, producing satisfactory yields and purities of targets.  相似文献   

2.
An efficient method for the preparative separation of four structurally similar caged xanthones from the crude extracts of gamboge was established, which involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography for the first time. pH‐zone‐refining counter‐current chromatography was performed with the solvent system composed of n‐hexane/ethyl acetate/methanol/water (7:3:8:2, v/v/v/v), where 0.1% trifluoroacetic acid was added to the upper organic stationary phase as a retainer and 0.03% triethylamine was added to the aqueous mobile phase as an eluter. From 3.157 g of the crude extract, 1.134 g of gambogic acid, 180.5 mg of gambogenic acid and 572.9 mg of a mixture of two other caged polyprenylated xanthones were obtained. The mixture was further separated by conventional high‐speed counter‐current chromatography with a solvent system composed of n‐hexane/ethyl acetate/methanol/water (5:5:10:5, v/v/v/v) and n‐hexane/methyl tert‐butyl ether/acetonitrile/water (8:2:6:4,v/v/v/v), yielding 11.6 mg of isogambogenic acid and 10.4 mg of β‐morellic acid from 218.0 mg of the mixture, respectively. The purities of all four of the compounds were over 95%, as determined by high‐performance liquid chromatography, and the chemical structures of the four compounds were confirmed by electrospray ionization mass spectrometry and NMR spectroscopy. The combinative application of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography shows great advantages in isolating and enriching the caged polyprenylated xanthones.  相似文献   

3.
Triterpene acids were extracted from the epidermis of Poria cocos (Schw.) Wolf. These acids were found to inhibit the growth of lung cancer cells in vitro and in vivo. An efficient method for the preparative separation of antitumor triterpene acids was established that involves the combination of pH‐zone‐refining counter‐current chromatography and conventional high‐speed counter‐current chromatography. We used pH‐zone‐refining counter‐current chromatography to concentrate the triterpene acids using a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (3:7:5:5, v/v/v/v), trifluoroacetic acid (10 mM) was added to the upper phase as a retainer, and ammonia (10 mM) was added to the lower phase as an eluter. As a result, 200 mg concentrate of triterpene acids was obtained from 1.0 g of crude extract. The concentrate was further separated by conventional high‐speed counter‐current chromatography using a solvent system composed of petroleum ether/ethyl acetate/methanol/water (0.8:1.2:1.2:0.9, v/v), yielding 50 mg of poricoic acid A and 5 mg of poricoic acid B from 120 mg concentrate, respectively. The inhibitory activity of the major compound on lung A549 cells was examined and poricoic acid A was found to significantly inhibit the growth of A 549 cells.  相似文献   

4.
pH‐Zone‐refining centrifugal‐partition chromatography (CPC) was successfully applied in the separation of complex polar steroidal glycoalkaloids of close Rf values, directly from a crude extract of Solanum xanthocarpum. The experiment was performed with a two phase solvent system composed of ethyl acetate/butanol/water (1:4:5 by volume) where triethylamine (5 mM) was added to the upper organic mobile phase as an eluter and TFA (10 mM) to the aqueous stationary phase as a retainer. Separation of 1 g of crude extract over CPC resulted in two distinct pH‐zones. The fractions collected in pH‐zone i afforded 72 mg of solasonine while the fractions collected in pH‐zone ii were slightly impure, hence were purified over medium pressure LC, which afforded 30 mg of solasonine and further 15 mg of solamargine (SM). The steroidal glycoalkaloids, SM and solasonine were isolated in 93.3 and 91.6% purity, respectively. The isolated alkaloids were characterized on the basis of their 1H, 13C‐NMR, and ESI‐MS data.  相似文献   

5.
Two β‐adrenergic blocking agents, 1‐[(1‐methylethyl)amino]‐3‐phenoxy‐2‐propanol ( 1 ) and 1‐[(1‐methylethyl)amino]‐3‐(3‐methylphenoxy)‐2‐propanol ( 2 ; Toliprolol), were enantioseparated by pH‐zone‐refining countercurrent chromatography. A two‐phase solvent system composed of chloroform containing 0.10 mol/L of di‐n‐hexyl l‐ tartrate/0.10 mol/L of boric acid aqueous solution (1:1, v/v) was selected, in which 20 mmol/L triethylamine was added in the organic phase as a retainer and 2 mmol/L HCl was added in the aqueous phase as an eluter. Fifty milligrams of each racemate was completely enantioseparated by pH‐zone‐refining countercurrent chromatography to yield each enantiomer with a purity of more than 98%, and the recovery of each separated enantiomer reached around 76–82%.  相似文献   

6.
Seven hydroxyanthraquinones were successfully separated from the traditional Chinese medicinal herb Cassiae semen by conventional and pH‐zone‐refining countercurrent chromatography with an environmentally friendly biphasic solvent system, in which elution–extrusion mode was investigated for pH‐zone‐refining countercurrent chromatography for the first time. A two‐phase solvent system composed of n‐hexane/ethyl acetate/ethanol/water (5:3:4:4, v/v/v/v) was used for the conventional countercurrent chromatography while the same system with a different volume ratio n‐hexane/ethyl acetate/ethanol/water (3:5:2:6, v/v/v/v) was used for pH‐zone‐refining countercurrent chromatography, in which 20 mmol/L of trifluoroacetic acid was added in the organic phase as a retainer and 15 mmol/L of ammonia was added to the aqueous phase as an eluter. A 400 mg crude sample could be well separated by pH‐zone‐refining countercurrent chromatography, yielding 53 mg of aurantio‐obtusin, 40 mg of chryso‐obtusin, 18 mg of obtusin, 24 mg of obtusifolin, 10 mg of emodin, and 105 mg of the mixture of chrysophanol and physcion with a purity of over 95.8, 95.7, 96.9, 93.5, 97.4, 77.1, and 19.8%, as determined by high‐performance liquid chromatography. Furthermore, the difference in elution sequence between conventional and pH‐zone‐refining mode was observed and discussed.  相似文献   

7.
pH‐zone‐refining centrifugal partition chromatography was successively applied in the large‐scale separation of close Rf antipsychotic indole alkaloids directly from CHCl3 fraction of Rauwolfia tetraphylla leaves. Two experiments with increasing mass from 500 mg to 3 g of crude alkaloid extracts ( 1 C) of R. tetraphylla were carried out in normal‐displacement mode using a two‐phase solvent system composed of methyl tert‐butyl ether/ACN/water (4:1:5, v/v/v) where HCl (12 mM) was added to the lower aqueous stationary phase as a retainer and triethylamine (5 mM) to the organic mobile phase as an eluter. The two centrifugal partition chromatography separations afforded a total of 162.6 mg of 10‐methoxytetrahydroalstonine ( 1 ) and 296.5 mg of isoreserpiline ( 2 ) in 97% and 95.5% purity, respectively, along with a 400.9 mg mixture of α‐yohimbine and reserpiline ( 3 and 4 ). Further, this mixture was resolved over medium pressure LC using TLC grade silica gel H (average particle size 10 μm), which afforded 160.4 mg of α‐yohimbine ( 3) and 150.2 mg of reserpiline ( 4) in >95% purities. The purity of the isolated antipsychotic alkaloids was analyzed by high‐performance LC and their structures were characterized on the basis of their 1D, 2D NMR and electrospray ionization‐mass spectroscopic data.  相似文献   

8.
An efficient and refined method for the separation of six aconitine‐type alkaloids from the alkaline prepared “Kusnezoff monkshood root” was established. It is the first study that two new lipo‐alkaloids were successfully isolated from refined sample by pH‐zone‐refining counter‐current chromatography rather than synthetic method. It was of interest that a great deal of lipo‐alkaloids was produced in crude extract from the alkalization of “Kusnezoff monkshood root.” A refined sample method was proposed to enrich two types of alkaloids by liquid–liquid extraction, i.e. lipo‐alkaloids and monoester‐diterpenoid alkaloids. The pH‐zone‐refining counter‐current chromatography was performed with an optimized two‐phase solvent system composed of n‐hexane‐ethyl acetate–methanol–water (3:5:4:5, v/v), where upper organic phase was added to 3 mmol/L triethylamine as a retainer and lower aqueous mobile phase was added to 3 mmol/L hydrochloric acid as an eluter. As a result, six aconitum alkaloids, including two lipo‐alkaloids (8‐lino‐14‐benzoylaconine, 8‐pal‐14‐benzoylaconine), three monoester‐diterpenoid alkaloids (14‐benzoylmesaconine, 14‐benzoylaconine, beyzoyldeoxyaconine), and one aconine alkaloid (neoline) were acquired from the plant at the same time. The anti‐inflammatory activities of the two new lipo‐alkaloids were compared to the six alkaloids in vitro, in cyclo‐oxygen‐ase‐2 inhibition assays. The separation mechanism of six alkaloids by pH‐zone‐refining counter‐current chromatography was illustrated.  相似文献   

9.
The optimal extraction condition for extracting quaternary ammonium alkaloid dehydrocorydaline from Corydalis yanhusuo W. T. Wang was investigated using orthogonal experimental design. pH‐zone‐refining counter‐current chromatography (CCC) with normal phase elution was successfully applied to preparative separation of alkaloids from the crude extract of Corydalis yanhusuo. The separation was performed with a biphasic solvent system composed of chloroform (CHCl3)–methanol (MeOH)–water (2:1:1, v/v), in which the lower organic phase containing 10 mM of triethylamine was used as the mobile phase, while the upper aqueous phase containing 10 mM of hydrochloric acid was used as the stationary phase. The separation mechanism of quaternary ammonium alkaloids using pH‐zone‐refining CCC was discussed in comparison with standard high‐speed CCC. In the present study, the separation of 1.200 g of crude sample yielded 129 mg of dehydrocorydaline and 12 mg of palmatine at a high purity of 94 and 92%, respectively. Recovery for dehydrocorydaline and palmatine was 85 and 86%, respectively.  相似文献   

10.
α‐Linolenic acid is an essential omega‐3 fatty acid needed for human health. However, the isolation of high‐purity α‐linolenic acid from plant resources is challenging. The preparative separation methods of α‐linolenic acid by both conventional and pH‐zone refining counter current chromatography were firstly established in this work. The successful separation of α‐linolenic acid by conventional counter current chromatography was achieved by the optimized solvent system n‐heptane/methanol/ water/acetic acid (10:9:1:0.04, v/v), producing 466 mg of 98.98% α‐linolenic acid from 900 mg free fatty acid sample prepared from perilla seed oil with linoleic acid and oleic acid as by‐products. The scaled‐up separation in 45× is efficient without loss of resolution and extension of separation time. The separation of α‐linolenic acid by pH‐zone refining counter current chromatography was also satisfactory by the solvent system n‐hexane/methanol/water (10:5:5, v/v) and the optimized concentration of trifluoroacetic acid 30 mM and NH4OH 10 mM. The separation can be scaled up in 180× producing 9676.7 mg of 92.79% α‐linolenic acid from 18 000 mg free fatty acid sample. pH‐zone refining counter current chromatography exhibits a great advantage over conventional counter current chromatography with 20× sample loading capacity on the same column.  相似文献   

11.
A new strategy by converging ultrafiltration high‐performance liquid chromatography with ultraviolet and mass spectrometry and pH‐zone‐refining counter‐current chromatography was developed for the rapid screening and separation of potential acetylcholinesterase inhibitors from the crude alkaloidals extract of Zanthoxylum nitidum. An optimized two‐phase solvent system composed of chloroform/methanol/water (4:3:3, v/v) was used in this study. And, in the optimal solvent system, 45 mM hydrochloric acid was added to the aqueous stationary phase as the retainer, while 5 mM triethylamine was added to the organic mobile phase as the eluter. As a result, with the purity of over 95%, five alkaloids including jatrorrhizine ( 1 , 340 mg), columbamine ( 2 , 112 mg), skimmianine ( 3 , 154 mg), palmatine ( 4 , 226 mg), and epiberberine ( 5 , 132 mg) were successfully purified in one step from 3.0 g crude alkaloidals extract. And their structures were identified by ultraviolet, mass spectrometry, 1H and 13C NMR spectroscopy. Notably, compounds 2 , 4 and 5 were firstly reported in Z. nitidum. In addition, acetylcholinesterase inhibitory activities of compounds 1–5 were evaluated, and compounds 3, 4 and 5 exhibited stronger acetylcholinesterase inhibitory activity (IC50 values at 8.52 ± 0.64, 14.82 ± 1.21 and 3.12 ± 0.32 μg/mL, respectively) than berberine (IC50 value at 32.86 ± 2.14 μg/mL, positive control). The results indicated that the proposed method is an efficient technique to rapidly screen acetylcholinesterase inhibitors from complex samples, and could be served as a large‐scale preparative technique for separating ionizable active compounds.  相似文献   

12.
A new type 1 ternary biphasic system composed of cyclopentyl methyl ether, dimethylformamide and water was developed, characterized and successfully used for the purification of a lipophilic, protected peptide by pH‐zone refining centrifugal partition chromatography. The protected peptide is an 8‐mer, key intermediate in bivalirudin (Angiomax®) synthesis and shows a very low solubility in the solvents usually used in liquid chromatography. All ionic groups, except the N‐terminal end of the peptide, are protected by a benzyl group. The purification of this peptide was achieved with a purity of about 99.04% and a recovery of 94% using the new ternary biphasic system cyclopentyl methyl ether/dimethylformamide/water (49:40:11, v/v) in the descending pH‐zone refining mode with triethylamine (28 mM) as the retainer and methanesulfonic acid (18 mM) as the eluter.  相似文献   

13.
Glycosides including triterpenoid saponins and flavonoid glycosides are the main constituents of Glycyrrhiza uralensis Fisch (licorice) and exhibit prominent pharmacological activities. However, conventional methods for the separation of glycosides always cause irreversible adsorption and unavoidable loss of sample due to their high hydrophilicities. The present paper describes a convenient method for the simultaneous separation of triterpenoid saponins and flavonoid glycosides from licorice by pH‐zone‐refining counter‐current chromatography. Ethyl acetate/n‐butanol/water (2:3:5, v/v) with 10 mM TFA in the upper organic stationary phase and 10 mM ammonia in the lower aqueous mobile phase was used as the biphasic solvent system. Three triterpenoid saponins and two flavonoid glycosides including licorice‐saponin A3 (63.3 mg), glycyrrhizic acid (342.2 mg), 3‐O‐[β‐d ‐glucuronopyranosyl‐(1 → 2)‐β‐d ‐galactopyranosyl]glycyrrhetic acid (56.0 mg), liquiritin apioside (232.6 mg), and liquiritin (386.5 mg) were successfully obtained from licorice ethanol extract (2 g) in one step. This method subtly takes advantage of the common acidic properties of triterpenoid saponins and flavonoid glycosides, and obviously is much more efficient and convenient than the previous methods. It is also the first time that the separation of acidic triterpenoid saponins by using pH‐zone‐refining counter‐current chromatography has been reported.  相似文献   

14.
This paper extends the research of the utilization of borate coordination complexes in chiral separation by counter‐current chromatography (CCC). Racemic propafenone was successfully enantioseparated by CCC with di‐n‐butyl l ‐tartrate combined with boric acid as the chiral selector. The two‐phase solvent system was composed of chloroform/ 0.05 mol/L acetate buffer pH 3.4 containing 0.10 mol/L boric acid (1:1, v/v), in which 0.10 mol/L di‐n‐butyl l ‐tartrate was added in the organic phase. The influence of factors in the enantioseparation of propafenone were investigated and optimized. A total of 92 mg of racemic propafenone was completely enantioseparated using high‐speed CCC in a single run, yielding 40–42 mg of (R)‐ and (S)‐propafenone enantiomers with an HPLC purity over 90–95%. The recovery for propafenone enantiomers from fractions of CCC was in the range of 85–90%.  相似文献   

15.
This study aimed to seek an efficient method to extract and purify yunaconitine and 8‐deacetylyunaconitine from Aconitum vilmorinianum Kom. by accelerated solvent extraction combined with pH‐zone‐refining counter‐current chromatography. The major extraction parameters for accelerated solvent extraction were optimized by an orthogonal test design L9 (3)4. Then a separation and purification method was established using pH‐zone‐refining counter‐current chromatography with a two‐phase solvent system composed of petroleum ether/ethyl acetate/methanol/water (5:5:2:8, v/v) with 10 mM triethylamine in the upper phase and 10 mM HCl in the lower phase. From 2 g crude extract, 224 mg of 8‐deacetylyunaconitine (I) and 841 mg of yunaconitine (II) were obtained with a purity of over 98.0%. The chemical structures were identified by ESI‐MS and 1H and 13C NMR spectroscopy.  相似文献   

16.
Preparative counter-current chromatography (CCC) was successfully used for isolation and purification of chlorogenic acid from Flaveria bidentis (L.) Kuntze with a solvent system composed of ethyl acetate–methanol–water at a volume ratio of 50:1:50, v/v. Using a preparative unit of the CCC centrifuge, about 800 mg of the crude extract was separated, yielding 3.2 mg of chlorogenic acid at a purity of 92.0%. The blood pressure lowering and antivirus chlorogenic acid (C16H18O9) was intercalated into magnesium–aluminum–layered double hydroxides, which was used as host materials for drug-LDH host-guest supermolecular structures by anion exchange under a nitrogen atmosphere. Chlorogenic acid–LDH is a functional and effective drug. The product chlorogenic acid–LDH has been characterized by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA) and scanning electron micrographs (SEM). The X-ray diffraction patterns of NO3 ? form of LDH and chlorogenic acid–LDH were compared, and the basal d spacing value of NO3 ?-LDH layer was 8.75 Å (2θ = 10.100°); however, the basal reflection (003) of chlorogenic acid–LDH shifts to lower 2θ (for 003 reflection: 2θ = 5.119°) that is expanded to 17.25 Å, indicating the intercalation of chlorogenic acid into the interlayer of Mg–Al-LDH. Thermogravimetric analysis showed that chlorogenic acid stability had improved, and scanning electron micrographs showed that the morphology of the chlorogenic acid–LDH was irregular masses of distinctly thicker flakes, which was similar to the morphology of NO3 ? form of LDH.  相似文献   

17.
Tropane alkaloids are bioactive metabolites with great importance in the pharmaceutical industry and the most important class of natural products found in the Erythroxylum genus. However, these compounds are usually separated by traditional chromatographic techniques, in which the sample is progressively purified in multiple chromatographic steps, resulting in a time‐ and solvent‐consuming procedure. In this work we present the isolation of a novel alkaloid, 6β,7β‐dibenzoyloxytropan‐3α‐ol, together with the two known 3α‐benzoyloxynortropan‐6β‐ol and 3α,6β‐dibenzoyloxytropane alkaloids, directly from the crude alkaloid fraction from the leaves of Erythroxylum subsessile, by using a single run pH‐zone‐refining counter‐current chromatography method. The ethyl acetate/water (1:1, v/v) biphasic solvent system with triethylamine and HCl as retention and eluter agents, respectively, was used to isolate tropane alkaloids for the first time. The structures of the isolated alkaloids were elucidated by spectroscopic methods.  相似文献   

18.
High‐speed countercurrent chromatography (HSCCC) combined with biphasic chiral recognition was successfully applied to the resolution of phenylsuccinic acid enantiomers. d ‐Isobutyl tartrate and hydroxypropyl‐β‐cyclodextrin were employed as lipophilic and hydrophilic selectors dissolved in the organic stationary phase and aqueous mobile phase, respectively. The two‐phase solvent system was made up of n‐hexane/methyl tert‐butyl ether/water (0.5:1.5:2, v/v/v). Impacts of the type and concentration of chiral selectors, the pH value of the aqueous phase solution as well as the temperature on the separation efficiency were investigated. By means of preparative HSCCC, pure enantiomer was obtained by separating 810 mg of racemate with a purity >99.5% and a recovery rate between 82 and 85%. The experimental results indicate that biphasic recognition HSCCC provide a promising means for efficient separation of racemates.  相似文献   

19.
In order to utilize and control the invasive weed, bioactive compounds from essential oil of Flaveria bidentis (L.) Kuntze were studied. Steam distillation extraction and one step high‐speed counter‐current chromatography were applied to separate and purify the caryophyllene oxide, 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene, and caryophyllene from essential oil of Flaveria bidentis (L.) Kuntze. The two‐phase solvent system containing n‐hexane/acetonitrile/ethanol (5:4:3, v/v/v) was selected for the one step separation mode according to the partition coefficient values (K) of the target compounds and the separation factor (α). The purity of each isolated fraction after a single high‐speed counter‐current chromatography run was determined by high performance liquid chromatography. A 3.2 mg of caryophyllene oxide at a purity of 92.6%, 10.4 mg of 7,11‐dimethyl‐3‐methylene‐1,6,10‐dodecatriene at a purity of 99.1% and 5.7 mg of caryophyllene at a purity of 98.8% were obtained from 200 mg essential oil of Flaveria bidentis (L.) Kuntze. The chemical structures of these components were identified by GC‐MS, 1H‐NMR, and 13C‐NMR.  相似文献   

20.
Since 1980, high-speed counter-current chromatography (HSCCC) has been used for separation and purification of natural and synthetic products in a standard elution mode. In 1991, a novel elution mode called pH-zone refining CCC was introduced from an incidental discovery that an organic acid in the sample solution formed the sharp peak of an acid analyte. The cause of this sharp peak formation was found to be bromoacetic acid present in the sample solution which formed a sharp trailing border to trap the acidic analyte. Further studies on the separation of DNP-amino acids with three spacer acids in the stationary phase revealed that increased sample size resulted in the formation of fused rectangular peaks, each preserving high purity and zone pH with sharp boundaries. The mechanism of this phenomenon was found to be the formation of a sharp trailing border of an acid (retainer) in the column which moves at a lower rate than that of the mobile phase. In order to facilitate the application of the method, a new method was devised using a set of retainer and eluter to form a sharp retainer rear border which moves through the column at a desired rate regardless of the composition of the two-phase solvent system. This was achieved by adding the retainer in the stationary phase and the eluter in the mobile phase at a given molar ratio. Using this new method the hydrodynamics of pH-zone-refining CCC was diagrammatically illustrated by three acidic samples. In this review paper, typical pH-zone-refining CCC separations were presented, including affinity separations with a ligand and a separation of a racemic mixture using a chiral selector in the stationary phase. Major characteristics of pH-zone-refining CCC over conventional HSCCC are as follows: the sample loading capacity is increased over 10 times; fractions are highly concentrated near saturation level; yield is improved by increasing the sample size; minute charged compounds are concentrated and detected at the peak boundaries; and elution peaks are monitored with a pH flow meter for compounds with no chromophore. Since 1994, over 70 research papers on pH-zone-refining CCC have been published with the trends increasing in the recent years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号