首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
A coordinated investigation of the magnetic and electrical properties of polycrystalline cobalt oxide compounds CdCoO3, Gd0.9Ba0.1CoO3, and Gd0.9Sr0.1CoO3 is carried out. Undoped GdCoO3 reveals a low conductivity; a magnetic moment of 7.4 μB per molecule, which is less than the theoretical value for the Gd3+ ion; and an asymptotic Curie temperature of ?6 K. Doping GdCoO3 with barium and strontium to substitution of 10 at. % Gd brings about an increase in the conductivity and magnetic transitions at T = 300 K for Gd0.9Ba0.1CoO3 and T = 170 K for Gd0.9Sr0.1CoO3. The magnetization anomalies imply the formation of magnetic clusters. The behavior of the electrical conductivity at high temperatures suggests a variable activation energy. At low temperatures, Mott hopping conduction sets in.  相似文献   

2.
The heat capacity and the permittivity of multiferroics Bi1 ? x Gd x FeO3 (x = 0, 0.05, 0.10, 0.15, 0.20) have been studied in the temperature range 130–800 K. It has been found that insignificant substitution of gadolinium for bismuth markedly shifts the temperature of antiferromagnetic phase transition and increases the heat capacity over a wide temperature range. It has been shown that the temperature dependence of the excess heat capacity is due to the manifestation of three-level states. Additional anomalies characteristic of the phase transitions have been revealed in the temperature dependences of the heat capacity for the compositions with x = 0.1 and 0.15 at T ≈ 680 K and T ≈ 430 K, respectively. The results of studies of the heat capacity have been discussed simultaneously with the data of structural studies.  相似文献   

3.
The specific heat was measured in the range 0.4–300 K in YFe3(BO3)4, Y0.5Gd0.5Fe3(BO3)4, and GdFe3(BO3)4 single crystals. Sharp anomalies were found at temperatures of first-order structural, second-order antiferromagnetic, and first-order spin-reorientational transitions. A Néel temperature of about 37 K was found to be virtually independent of presence of rare-earth ions, indicating rather weak coupling of Gd and Fe subsystems. The contribution of the magnetic system to specific heat was separated through the scaling procedure allowing determination of the magnetic entropy of Fe and Gd subsystems. At the lowest temperatures, the specific heat in GdFe3(BO3)4 exhibits a Schottky-type anomaly, which is due to Gd3+ eightfold degenerate ground-level splitting by the internal magnetic field of the Fe subsystem of about 7 T. The text was submitted by the authors in English.  相似文献   

4.
The thermally stimulated recombination processes and luminescence in crystals of the lithium borate family Li6(Y,Gd,Eu)(BO3)3 have been investigated. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence spectra), the temperature dependences of the X-ray luminescence intensity, and the glow curves for the Li6Gd(BO3)3, Li6Eu(BO3)3, Li6Y0.5Gd0.5(BO3)3: Eu, and Li6Gd(BO3)3: Eu compounds have been measured in the temperature range 90–500 K. In the X-ray luminescence spectra, the band at 312 nm corresponding to the 6 P J 8 S 7/2 transitions in the Gd3+ ion and the group of lines at 580–700 nm due to the 5 D 07 F J transitions (J = 0–4) in the Eu3+ ion are dominant. For undoped crystals, the X-ray luminescence intensity of these bands increases by a factor of 15 with a change in the temperature from 100 to 400 K. The possible mechanisms providing the observed temperature dependence of the intensity and their relation to the specific features of energy transfer of electronic excitations in these crystals have been discussed. It has been revealed that the glow curves for all the crystals under investigation exhibit the main complex peak with the maximum at a temperature of 110–160 K and a number of weaker peaks with the composition and structure dependent on the crystal type. The nature of shallow trapping centers responsible for the thermally stimulated luminescence in the range below room temperature and their relation to defects in the lithium cation sublattice have been analyzed.  相似文献   

5.
Films of the composition Ge40S60 have been studied in the temperature range of 313–423 K for electrical conductivity, and 293–373 K for thermal conductivity. The dc conductivity results indicate a single value activation energy of 0.863 eV for the conductivity in the applied temperature range. The thermal conductivity coefficient increases linearly with temperature at a thickness of d=0.311 cm. It was found that the investigated samples show a memory effect. The threshold switching voltage was found to increase linearly with film thickness. Moreover, the threshold voltage decreases exponentially with temperature. The data are analysed using a thermal model for the switching process.  相似文献   

6.
We report the microstructural and magnetic properties of transition (3d) and rare earth (4f) metal substituted into the Ax:Zn1?xO (A=Mn, Gd and Mn/Gd) nanocrystal samples synthesized by solgel method. The structural properties and morphology of all samples have been analysed using X-ray diffraction (XRD) method and scanning electron microscopy. The impurity phase in the XRD patterns for all samples is not seen, except (Mn/Gd):ZnO sample where a very weak secondary phase of Gd2O3 is observed. Due to the large mismatch of the ionic radii between Mn2+ and Gd3+ ions, the strain inside the matrix increases, unlike the crystallite size decreases with the substitution of Mn and Gd into ZnO system. A couple of additional vibration modes due to the dopant have been observed in Raman spectrum. The magnetic properties have been studied by vibrating sample magnetometer. The magnetic hysteresis shows that Mn:ZnO and Gd:ZnO have soft ferromagnetic (FM) behaviour, whereas (Mn/Gd):ZnO has strong FM behaviour at room temperature (RT). The enhancement of ferromagnetism (FM) in (Mn/Gd):ZnO sample might be related to short-range FM coupling between Mn2+ and Gd3+ ions via defects potential and/or strain-induced FM coupling due to the expansion lattice by doping. The experimental results indicate that RTFM can be achieved by co-substitution of 3d and 4f metals in ZnO which can be used in spintronics applications.  相似文献   

7.
The luminescence and thermally stimulated recombination processes in lithium borate crystals Li6Gd(BO3)3 and Li6Gd(BO3)3:Ce have been studied. The steady-state luminescence spectra under X-ray excitation (X-ray luminescence), temperature dependences of the intensity of steady-state X-ray luminescence (XL), and thermally stimulated luminescence (TSL) spectra of these compounds have been investigated in the temperature range of 90–500 K. The intrinsic-luminescence 312-nm band, which is due to the 6 P J 8 S 7/2 transitions in Gd3+ matrix ions, dominates in the X-ray luminescence spectra of these crystals; in addition, there is a wide complex band at 400–420 nm, which is due to the d → f transitions in Ce3+ impurity ions. It is found that the steady-state XL intensity in these bands increases several times upon heating from 100 to 400 K. The possible mechanisms of the observed temperature dependence of the steady-state XL intensity and their correlation with the features of electronic-excitation energy transfer in these crystals are discussed. The main complex TSL peak at 110–160 K and a number of minor peaks, whose composition and structure depend on the crystal type, have been found in all crystals studied. The nature of the shallow traps that are responsible for TSL at temperatures below room temperature and their relation with defects in the lithium cation sublattice are discussed.  相似文献   

8.
Single crystal X-ray diffraction data indicate that the R2Co3Zn14 (R=Gd, Y) phase crystallizes non-stoichiometrically with a mixed occupancy of Co/Zn atoms on the 12-coordinated transition metal site and one of the three zinc sites. The crystals are rhombohedral with R-3m space group. Magnetization measurements provide no evidence of localized 3d electron moment in Y2Co2.3Zn14.7 which is non-magnetic down to 1.8 K. Thermodynamic and transport measurements on two Gd2Co3+xZn14−x crystals reveal that the extra cobalt influences temperature below which the samples enter into an antiferromagnetic state: TN=31.5(3) K for Gd2Co3Zn14 and 28(1) K for Gd2Co4.2Zn12.8. A lower magnetic ordering temperature of Tmag=6.0(2) K is common in both Gd samples.  相似文献   

9.
The influences of gallium substitution for terbium in Gd60Tb40 on the phase formation, Curie temperature and magnetic entropy change have been investigated. A series of Gd60Tb40−xGax with x=0, 1, 3 and 5 alloys were prepared by arc-melting method. The X-ray diffraction (XRD) analysis reveals that a small amount of Ga substitution for terbium in Gd60Tb40 can form the solid solution (Gd, Tb). The Curie temperature (Tc) increases from 270 K for Gd60Tb40 to 297 K for Gd60Tb37Ga3, while the maximum magnetic entropy changes ΔSM, max decreases from 5.15 J/K kg for Gd60Tb40 to 3.32 J/K kg for Gd60Tb37Ga3 with increasing the Ga content.  相似文献   

10.
《Current Applied Physics》2018,18(12):1605-1608
Gd1-xHoxNi melt-spun ribbons were fabricated by a single-roller melt spinning method. All the compounds crystallize in an orthorhombic CrB-type structure. The Curie temperature (TC) was tuned between 46 and 99 K by varying the concentration of Gd and Ho. A spin reorientation (SRO) transition is observed around 13 K. Different from TC, the SRO transition temperature is almost invariable for all compounds. Two peaks of magnetic entropy change (ΔSM) were found. One at the higher temperature range was originated from the paramagnet-ferromagnet phase transition and the other at the lower temperature range was caused by the SRO transition. The maximum of ΔSM around TC is almost same. The other maximum of ΔSM around SRO transition, however, had significantly positive relationship with x. It reached a maximum about 8.2 J kg−1 K−1 for x = 0.8. Thus double large ΔSM peaks were obtained in Gd1-xHoxNi melt-spun ribbons with the high Ho concentration. And the refrigerant capacity power reached a maximum of 622 J kg−1 for x = 0.6. Gd1-xHoxNi ribbons could be good candidate for magnetic refrigerant working in the low temperature especially near the liquid nitrogen temperature range.  相似文献   

11.
The lithium niobate single crystals doped with B, Zn, and Gd at a content of 0.002–0.44 wt % have been grown. Their domain structure, static and dynamic piezoelectric properties, dielectric properties, and conductivity are investigated over a wide range of frequencies. The dielectric dispersion associated with the Debye-type relaxation process and considerable anomalies in ?′22(T) and conductivity are revealed in the temperature range ~300–400 K. At these temperatures, the piezoelectric modulus d 33 of the initial polydomain crystals LiNbO3: Gd jumpwise increases up to the values close to those for the undoped single-domain crystal. This increase is accompanied by a substantial change in the etch patterns due to the domain structure of the crystal. The nature of the anomalies observed in LiNbO3 in the above temperature range is discussed.  相似文献   

12.
In order to improve the conductivity of ceria-based solid electrolytes, effect of co-doped Gd3+ and Dy3+ was evaluated. For this purpose, nano-crystalline Gd0.2???x Dy x Ce0.8O1.9 powders with various composition ranges (x?=?0.05, 0.1, 0.15, 0.2) were initially synthesized by high-energy milling method. The effect of micro-structural evolution and co-doping on electrical properties of the dense sintered samples fabricated by two-step sintering and conventional sintering of the synthesized powders were investigated. Electrical conductivity of the samples was discussed based on the results obtained by AC impedance spectroscopy at temperatures in the range of 300–700 °C. The co-doping and sintering regime were found to significantly influence the conductivity of the electrolytes. The electrical conductivity of the co-doped samples depends on Dy3+ content and the maximum conductivity obtained by 0.15 mol% Dy and 0.05 mol% Gd. The conductivity of Gd0.2???x Dy x Ce0.8O1.9 (x?=?0.15) was 0.03 S/cm at 700 °C. A thorough discussion was made, based on the present experimental data.  相似文献   

13.
The Potts-like model is utilized to describe an alloy Gd1−xCx with x=0, 0.025, 0.06, 0.09, and the magnetic and magnetocaloric properties are calculated by Monte Carlo method. The effect of the local distortion of the lattice due to adulterated C atom on the exchange interaction between Gd atoms can be considered. The spontaneous magnetization, specific heat, and magnetic susceptibility are calculated. It is found that the magnetization at low temperature decreases but phase transition temperature from ferromagnetic to paramagnetic increases, as the concentration of the C atom in the system increases. Moreover, the specific heat and the susceptibility exhibit peaks at the transition temperature. For two external magnetic field h/J=0.25 and 10.0, the magnitude of the isothermal magnetic entropy change in binary alloy is more than in pure Gd system. Furthermore, the range of temperature of half peak in the curve of the magnetic entropy change becomes wide and the refrigerant capacity increases in the alloy.  相似文献   

14.
In this paper, magnetic property and magnetocaloric effect (MCE) in nanoparticles perovskite manganites of the type (La0.67−xGdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) synthesized by using an amorphous molecular alloy as precursor have been reported. From the magnetic measurements as function of temperature and magnetic applied field, we have discovered that the Curie temperature (TC) of the prepared samples is found to be strongly dependent on Gd content. The Curie temperature of samples is 358.4, 343.2, and 285.9 K for x=0.1, 0.15, and 0.2, respectively. A large magnetocaloric effect close to TC has been observed with a maximum of magnetoentropy change in all the samples, ∣ΔSMmax of 1.96 and 4.90 J/kg K at 2 and 5 T, respectively, for a substitution rate of 0.15. In addition, the maximum magnetic entropy change observed for samples with different concentration of Gd, exhibits a linear dependence with the applied high magnetic field. These results suggest that (La0.67−x Gdx)Sr0.33MnO3 (x=0.10, 0.15, 0.20) compounds could be a suitable candidate as working substance in magnetic refrigeration near room temperature.  相似文献   

15.
The interaction of oxygen with evaporated Gd films at 300 K has been studied for the first time using AlK α XPS and Hel and Hell UPS. The characteristic changes in the Gd(6s5d) and O(2p) valence bands, Gd(4f), Gd(5p) and Gd(4d) core levels, and O(2s) and O(1s) core levels were studied. Evidence is presented for the initial formation of an intermediate oxidation state at low exposure (characterized by a new Gd valence band with a maximum in the DOS at ~ 2.5 ev below EF and an ~ 0.6 eV shift in Gd(4f)) prior to formation of Gd2O3 where the Gd(6s5d) valence band disappears completely, as expected for Gd3+. In the higher exposure range there is little further increase in the oxide thickness, which is estimated as ? 20 A?, but there is a slow replacement of O by OH, as characterized by a second O(1s) feature at 532.3 eV and OH 1π and 3σ orbitals in UPS at ~ 6.7 and 11.5 eV. The interpretations are supported by parallel studies on bulk Gd2O3 and by Ar+ sputtering experiments. Comparisons are made to other rare earth oxidation studies.  相似文献   

16.
17.
Phonon–phonon interactions and phase stability of Gd‐doped ceria nanocrystals were examined over the temperature range 293–1100 K by Raman spectroscopy. The phonon confinement model (PCM) based on size, inhomogeneous strain and anharmonic effects was used to properly describe the anharmonic interactions in this system. The interplay between size and anharmonic effects influenced different phonon decay channels in nano grains than in larger grains. After the gradual cooling down to room temperature (RT), the Raman study revealed the phase separation in this system pointing to the phase instability of Ce0.85Gd0.15O2−δ nanocrystals after heat treatment. The concentration of extrinsic (intrinsic) oxygen vacancies was also studied by Raman spectroscopy during the heat treatment of the Ce0.85Gd0.15O2−δ nanocrystalline sample. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Results of measurements of conductivity and Hall coefficient in the temperature range 15–300K and of thermal emf in the temperature range 80–400K, carried out on TiS3 samples, are reported. The results indicate that these crystals are semiconducting with extrinsic n-type conductivity. The mobility of the carriers is about 30 cm2/V sec at room temperature, increases up to about 100 cm2/V sec at 100K and drops at lower temperatures. The Seebeck coefficient is in qualitative agreement with these findings but its detailed temperature dependence is not yet understood.  相似文献   

19.
In this study, the AC conductivity of insulating Gd1/3Sr2/3FeO3 was analyzed within the framework of the quantum-mechanical tunneling mechanism (QMT) and the hopping of barrier mechanism (HOB). Experimental data were taken from 20 Hz to 1 MHz and from 80 to 300 K. Observation revealed that the small polaron QMT model is the more suitable mechanism for modeling the AC conductivity of Gd1/3Sr2/3FeO3 at low temperatures.  相似文献   

20.
通过X射线衍射和磁性测量等手段研究了(Nd1-xGdx)3Fe27.31Ti1.69(0≤x≤0.6)化合物的结构和磁性.X射线衍射测量结果表明Gd替代后并未改变Nd3(Fe,Ti)29化合物的晶体结构,但引起了晶胞体积收缩.随着Gd含量的增加,化合物的居里温度TC和室温磁晶各向异性场Ba单调增加,而自旋重取向 关键词: 1-xGdx)3Fe27.31Ti1.69化合物')" href="#">(Nd1-xGdx)3Fe27.31Ti1.69化合物 磁晶各向异性 自旋重取向 磁相图  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号