首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 820 毫秒
1.
The effect of zinc chloride (ZnCl2) on the cationic polymerization of isobutyl vinyl ether (IBVE) initiated by carboxyl groups on a carbon black surface was investigated. Although the polymerization of IBVE was initiated by carboxyl groups on the surface, the rate of polymerization was small and the molecular weight distribution (MWD) of poly IBVE was very broad. The rate of the polymerization was found to be drastically increased, and 100% monomer conversion was achieved in a short time by the addition of ZnCl2. The number-average molecular weights (Mn) of the polyIBVE were directly proportional to monomer conversion in the polymerization initiated by the carbon black/ZnCl2 system. By addition of the monomer at the end of the first-stage polymerization, the added monomer was smoothly polymerized at the same rate as in the first stage. The Mn of the polymer was in excellent agreement with the calculated value, assuming the polyIBVE chain forms per unit carboxyl group on the surface and MWD was narrow (Mw/Mn = 1.2 ~ 1.3). Based on the results, it is concluded that carbon black/ZnCl2 system has an ability to initiate the living cationic polymerization of IBVE. Furthermore, it was found that polyIBVE was grafted onto the carbon black surface after the quenching of the living polymer with methanol. © 1995 John Wiley & Sons, Inc.  相似文献   

2.
Trimethylsilyl halides (Me3SiY), in conjunction with zinc halides (ZnX2) (Y and X:I, Br, Cl), were employed to investigate the living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at ?15°C in the presence of p-methoxybenzaldehyde; with the aldehyde and IBVE monomer, Me3SiY yields an initiating species [Me3Si? O? CHC6H4(OMe) ? CH2CH(OiBu) ? Y] that triggers the IBVE polymerization via the activation of its carbon-halogen bond (C? Y) by ZnX2 into Cδ+…?Yδ?…?ZnX2. Living polymerizations occurred with the silyl iodide and bromide irrespective of the type of ZnX2, either when Y = X (Me3Sil/Znl2 and Me3SiBr/ZnBr2) or when Y ≠ X (Me3Sil/ZnBr2, Me3SiI/ZnCl2, and Me3SiBr/Znl2). With these five initiating systems, the number-average molecular weights (M?n) of the polymers increased in proportion to monomer conversion, and the molecular weight distributions (MWDs) of the polymers were narrow (M?w/M?n = 1.1?1.2). The Me3SiCl-based systems (Me3SiCl/ZnCl2 and Me3SiCl/Znl2), in (Me3SiCl/Znl2), in contrast, failed to give perfectly living polymerization; the M?n indeed increased with conversion, but the MWDs of the polymers were broader (M?w/M?n = 1.3?1.5). Thus, the living nature of the polymerizations with Me3SiY/Znx2 is primarily determined by the halogen Y in Me3SiY, which generates the terminal carbon-halogen bond (C? Y) that is activated by ZnX2 for the propagation via a species Cδ+…?Yδ?…?ZnX2. For Y?, not only the iodide but the bromide anion also is suited for living cationic polymerization. The virtual absence of the effects of X in ZnX2 implies that the halogen exchange between ZnX2 and Y from Me3 SiY at the growing end (Cλ+…?Yδ?…?ZnX2 ?Cδ+…?Xδ?…?ZnXY) is absent or negligible.  相似文献   

3.
Cationic polymerization of isobutyl vinyl ether (IBVE) with acetic acid (CH3COOH)/tin tetrahalide (SnX4: X = Cl, Br, I) initiating systems in toluene solvent at 0°C was investigated, and the reaction conditions for living polymerization of IBVE with the new initiating systems were established. Among these tin tetrahalides, SnBr4 was found to be the most suitable Lewis acid to obtain living poly(IBVE) with a narrow molecular weight distribution (MWD). The polymerization with the CH3COOH/SnBr4 system, however, was accompanied with the formation of a small amount of another polymer fraction of very broad MWD, probably due to the occurrence of an uncontrolled initiation by SnBr4 coupled with protonic impurity. Addition of 1,4-dioxane (1–1.25 vol %) or 2,6-di-tert-butylpyridine (0.1–0.6mM) to the polymerization mixture completely eliminated the uncontrolled polymer to give only the living polymer with very narrow MWD (M w/M n ≤ 1.1; M w, weight-average molecular weight; M n, number-average molecular weight). The M n of the polymers increased in direct proportion to monomer conversion, continued to increase upon sequential addition of a fresh monomer feed, and was in good agreement with the calculated values assuming that one CH3COOH molecule formed one polymer chain. Along with these results, kinetic study and direct 1H-NMR observation of the living polymerization indicated that CH3COOH and SnBr4 act as so-called “initiator” and “activator”, respectively, and the living polymerization proceeds via an activation of the acetate dormant species. The basic additives such as 1,4-dioxane and 2,6-di-tert-butylpyridine would serve mainly as a “suppressor” of the uncontrolled initiation by SnBr4. The polymers produced after quenching the living polymerization with methanol possessed the acetate dormant terminal and they induced living polymerization of IBVE in conjunction with SnBr4 in the presence of 1,4-dioxane. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 3173–3185, 1998  相似文献   

4.
A quite small dose of a poisonous species was found to induce living cationic polymerization of isobutyl vinyl ether (IBVE) in toluene at 0 °C. In the presence of a small amount of N,N‐dimethylacetamide, living cationic polymerization of IBVE was achieved using SnCl4, producing a low polydispersity polymer (weight–average molecular weight/number–average molecular weight (Mw/Mn) ≤ 1.1), whereas the polymerization was terminated at its higher concentration. In addition, amine derivatives (common terminators) as stronger bases allow living polymerization when a catalytic quantity was used. On the other hand, EtAlCl2 produced polymers with comparatively broad MWDs (Mw/Mn ~ 2), although the polymerization was slightly retarded. The systems with a strong base required much less quantity of bases than weak base systems such as ethers or esters for living polymerization. The strong base system exhibited Lewis acid preference: living polymerization proceeded only with SnCl4, TiCl4, or ZnCl2, whereas a range of Lewis acids are effective for achieving living polymerization in the conventional weak base system such as an ester and an ether. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6746–6753, 2008  相似文献   

5.
In the living cationic polymerization of isobutyl vinyl ether (IBVE) by the CH3CH (OiBu) OCOCH3 ( 1 )/EtAlCl2 initiating system in the presence of the added base in hexane at +40°C, the stability of the initiating system 1 /EtAlCl2, which form initiating species CH3CH (OiBu) derived from 1 , was investigated. In the presence of the Lewis base such as ethyl acetate or 1,4-dioxane, the active species was stable for 300 min even at +40°C in the absence of IBVE, and the living polymers were quantitatively obtained by adding IBVE. However, the active species was partly consumed by side reactions during the standing time for 60 min in the presence of a less basic additive such as ethyl benzoate, and about 50% of the active species was deactivated in the presence of methyl chloroacetate. Consequently, in the case of a less basic additive such as methyl chloroacetate (which was effective for the fast living polymerization), it can be seen that the careful selection of polymerization conditions was required. The living polymerization rate was dependent on the second order of EtAlCl2 concentration. EtAlCl2 induced the cleavage of 1 into CH3CH (OiBu) and EtAl?Cl2(OCOCH3), and the reactivity of CH3CH (OiBu) and propagating carbocation may be controlled by EtAl?Cl2(OCOCH3) with the aid of other EtAlCl2. Et1.5AlCl1.5 exists as a bimetallic complex of EtAlCl2 and Et2AlCl, and it is expected that the polymers having a bimodal molecular weight distribution will be obtained due to two kinds of counteranions coming from EtAlCl2 and Et2AlCl. However, in the cationic polymerization of IBVE by 1 /Et1.5AlCl1.5 in the presence of ethyl acetate, the living polymer exhibiting a unimodal and very narrow molecular weight distribution was obtained. Thereby, it was suggested that the counteranions, EtAl?Cl2(OCOCH3) and Et2Al?Cl(OCOCH3), exchange rapidly with each other. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
Cationic polymerization of n‐butyl propenyl ether (BuPE; CH3CH CHOBu, cis/trans = 64/36) was examined with the HCl–IBVE (isobutyl vinyl ether) adduct/ZnCl2 initiating system at −15 ∼ −78 °C in nonpolar (hexane, toluene) and polar (dichloromethane) solvents, specifically focusing on the feasibility of its living polymerization. In contrast to alkyl vinyl ethers, the living nature of the growing species in the BuPE polymerization was sensitive to polymerization temperature and solvent. For example, living cationic polymerization of IBVE can be achieved even at 0 °C with HCl–IBVE/ZnCl2, whereas for BuPE whose β‐methyl group may cause steric hindrance ideal living polymerization occurred only at −78 °C. Another interesting feature of this polymerization is that the polymerization rate in hexane is as large as in dichloromethane, much larger than in toluene. A new method in determining the ratio of the living growing ends to the deactivated ones was developed with a devised monomer‐addition experiments, in which IBVE that can be polymerized in a living fashion below 0 °C was added to the almost completely polymerized solution of BuPE. The amount of the deactivated chain ends became small in hexane even at −40 °C in contrast to other solvents. Thus hexane turned out an excellent solvent for living cationic polymerization of BuPE. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 229–236, 2000  相似文献   

7.
A series of mono‐, bis‐, and tris(phenoxy)–titanium(IV) chlorides of the type [Cp*Ti(2‐R? PhO)nCl3?n] (n=1–3; Cp*=pentamethylcyclopentadienyl) was prepared, in which R=Me, iPr, tBu, and Ph. The formation of each mono‐, bis‐, and tris(2‐alkyl‐/arylphenoxy) series was authenticated by structural studies on representative examples of the phenyl series including [Cp*Ti(2‐Ph? PhO)Cl2] ( 1 PhCl2 ), [Cp*Ti(2‐Ph? PhO)2Cl] ( 2 PhCl ), and [Cp*Ti(2‐Ph? PhO)3] ( 3 Ph ). The metal‐coordination geometry of each compound is best described as pseudotetrahedral with the Cp* ring and the 2‐Ph? PhO and chloride ligands occupying three leg positions in a piano‐stool geometry. The mean Ti? O distances, observed with an increasing number of 2‐Ph? PhO groups, are 1.784(3), 1.802(4), and 1.799(3) Å for 1 PhCl2 , 2 PhCl , and 3 Ph , respectively. All four alkyl/aryl series with Me, iPr, tBu, and Ph substituents were tested for ethylene homopolymerization after activation with Ph3C+[B(C6F5)4]? and modified methyaluminoxane (7% aluminum in isopar E; mMAO‐7) at 140 °C. The phenyl series showed much higher catalytic activity, which ranged from 43.2 and 65.4 kg (mmol of Ti?h)?1, than the Me, iPr, and tBu series (19.2 and 36.6 kg (mmol of Ti?h)?1). Among the phenyl series, the bis(phenoxide) complex of 2 PhCl showed the highest activity of 65.4 kg (mmol of Ti?h)?1. Therefore, the catalyst precursors of the phenyl series were examined by treating them with a variety of alkylating reagents, such as trimethylaluminum (TMA), triisobutylaluminum (TIBA), and methylaluminoxane (MAO). In all cases, 2 PhCl produced the most catalytically active alkylated species, [Cp*Ti(2‐Ph? PhO)MeCl]. This enhancement was further supported by DFT calculations based on the simplified model with TMA.  相似文献   

8.
Initiated by an organic molecule trifluoromethanesulfonimide (HNTf2) without any Lewis acid or Lewis base stabilizer, cationic polymerization of isobutyl vinyl ether (IBVE) takes place rapidly and the polymerization is proved to be in a controlled/living manner. The conversion of IBVE could easily achieve 99% in seconds. The product poly(isobutyl vinyl ether) is narrowly distributed and its molecular weight increases linearly with time and fits well with the corresponding theoretical value. This single‐molecular initiating system also works well in the living cationic polymerization of ethyl vinyl ether. HNTf2 is considered playing multiple roles which include initiator, activator, and stabilizer in the polymerization. It is quite different from the hydrogen halide‐catalyzed polymerizations of vinyl ethers. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1373‐1377  相似文献   

9.
Living cationic copolymerization of amide‐functional vinyl ethers with isobutyl vinyl ether (IBVE) was achieved using SnCl4 in the presence of ethyl acetate at 0 °C: the number–average molecular weight of the obtained polymers increased in direct proportion to the monomer conversion with relatively low polydispersity, and the amide‐functional monomer units were introduced almost quantitatively. To optimize the reaction conditions, cationic polymerization of IBVE in the presence of amide compounds, as a model reaction, was also examined using various Lewis acids in dichloromethane. The combination of SnCl4 and ethyl acetate induced living cationic polymerization of IBVE at 0 °C when an amide compound, whose nitrogen is adjacent to a phenyl group, was used. The versatile performance of SnCl4 especially for achieving living cationic polymerization of various polar functional monomers was demonstrated in this study as well as in our previous studies. Thus, the specific properties of the SnCl4 initiating system are discussed by comparing with the EtxAlCl3?x systems from viewpoints of hard and soft acids and bases principle and computational chemistry. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6129–6141, 2008  相似文献   

10.
A series of multifunctional malonate anions, [Na⊕?C(COOEt)2CH2]mC6H6?m(I; m = 2–4), were examined as polymer coupling agents for the living cationic polymerization of vinyl ethers initiated with the hydrogen iodide/zinc iodide (HI/ZnI2) initiating system. The bifunctional anion ( 2 ;I, m = 2), 1,4-[Na⊕?C(COOEt)2CH2]2C6H4, terminated living polymers of isobutyl vinyl ether (IBVE) (DP n = 10) almost quantitatively in toluene at ?15°C to give coupled living polymers with doubled molecular weights in 96% yield; the dianion 2 was dissolved in tetrahydrofuran containing 18-crown-6 for maintaining the solution homogeneous. The yield of the coupled polymers was increased with shorter living chains or in less polar solvents. Also by coupling via 2 , ABA block copolymers were obtained from living AB block polymers of IBVE and an ester-functionalized vinyl ether (CH2?CHOCH2CH2OCOCH3). Coupling of living poly(IBVE) with the trifunctional anion ( 3 ; I, m = 3) led to tri-armed polymers in 56% yield, whereas with the tetrafunctional version ( 4 ; I, m = 4), only three out of the four anions reacted to give another tri-armed polymer in 85% yield. © 1993 John Wiley & Sons, Inc.  相似文献   

11.
Star‐shaped polymers of isobutyl vinyl ether (IBVE) with many arms (“crew cut” type) have been synthesized by living cationic polymerization using the HCl‐IBVE adduct/ZnCl2 initiating system. A short living polymer (DPn ⪇ 30) of IBVE is allowed to react with a large amount of divinyl ether ([divinyl ether]0/[P*] = 10–15) to give soluble star polymers whose number of arms ranged from 40 to 120. The diameter of such “crew cut” star polymers reached ca. 20 nm.  相似文献   

12.
The living cationic polymerization of isobutyl vinyl ether (IBVE) was investigated in the presence of various cyclic and acyclic ethers with 1-(isobutoxy)ethyl acetate [CH3CH(OiBu)OCOCH3, 1 ]/EtAlCl2 initiating system in hexane at 0°C. In particular, the effect of the basicity and steric hindrance of the ethers on the living nature and the polymerization rate was studied. The polymerization in the presence of a wide variety of cyclic ethers [tetrahydrofuran (THF), tetrahydropyran (THP), oxepane, 1,4-dioxane] and cyclic formals (1,3-dioxolane, 1,3-dioxane) gave living polymers with a very narrow molecular weight distribution (MWD) (M?ω/M?n ≤ 1.1). On the other hand, propylene oxide and oxetane additives resulted in no polymerization, whereas 1,3,5-trioxane gave the nonliving polymer with a broader MWD. The polymerization rates were dependent on the number of oxygen and ring sizes, which were related to the basicity and the steric hindrance. The order of the apparent polymerization rates in the presence of cyclic ether and formal additives was as follows: nonadditive ~ 1,3,5-trioxane ? 1,3-dioxane > 1,3-dioxolane ? 1,4-dioxane ? THP > oxepane ? THF ? oxetane, propylene oxide ? 0. The polymerization in the presence of the cyclic formals was much faster than that of the cyclic ethers: for example, the apparent propagation rate constant k in the presence of 1,3-dioxolane was 103 times larger than that in the presence of THF. Another series of experiments showed that acyclic ethers with oxyethylene units were effective as additives for the living polymerization with 1 /EtAlCl2 initiating system in hexane at 0°C. The polymers obtained in the presence of ethylene glycol diethyl ether and diethylene glycol diethyle ether had very narrow molecular weight distribution (M?ω/M?n ≤ 1.1), and the M?n was directly proportional to the monomer conversion. The polymerization behavior was quite different in the polymerization rates and the MWD of the obtained polymers from that in the presence of diethyl ether. These results suggested the polydentate-type interaction or the alternate interaction of two or three ether oxygens in oxyethylene units with the propagating carbocation, to permit the living polymerization of IBVE. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
Amphiphilic graft polymers of vinyl ethers (VEs) ( 6 ) where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(alkyl vinyl ether) segment were prepared on the basis of living cationic polymerization, and their properties and functions were compared with the corresponding amphiphilic star-shaped polymers. In toluene at ?15°C, the HI/ZnI2-initiated living block polymer 2 of an ester-containing VE (CH2? CHOCH2CH2OCOCH3) and isobutyl VE (IBVE) was terminated with the diethyl 2-(vinyloxy)ethylmalonate anion [ 3 ; ΦC(COOEt)2CH2CH2OCH ? CH2] ( 2/3 = 1/2 mole ratio) to give a macromonomer ( 4 ), H[CH2CH(OCH2CH2OCOCH3)] m-[CH2CH(OiBu)]n? C(COOEt)2CH2CH2OCH ? CH2 (m = 5, n = 15; M?n = 2600, M?w/M?n = 1.13, 1.10 vinyl groups/chain). Subsequently, 4 was homopolymerized with HI/ZnI2 in toluene at ?15°C. In 3 h, 85% of 4 was consumed and a graft polymer ( 5 ) was obtained [M?w = 15000, DPn (for 4 ) = 6]. The apparent M?w (10,900) of 5 by size-exclusion chromatography (SEC) is smaller than that by light scattering as well as that (18,300) by SEC of the corresponding linear polymer with the almost same molecular weight, indicating the formation of a multi-branched structure. Hydrolysis of the pendant esters in 5 gave the amphiphilic graft polymer 6 where each branch consists of a hydrophilic polyalcohol and a hydrophobic poly(IBVE) segment. The graft polymer 6 was found to interact specifically with small organic molecules (guests) with polar functional groups, and 6 differed in solubility and host-guest interaction from the corresponding star-shaped polymer. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
Matrix‐assisted laser desorption ionization time of flight mass spectrometry (MALDI‐TOF‐MS) was utilized for the analysis of polymers obtained by the living cationic polymerization of isobutyl vinyl ether (IBVE) with the HCl‐VE adduct/SnCl4/n‐Bu4NCl initiating system in CH2Cl2 at −78 °C. Under optimized analysis conditions, well‐resolved spectra were obtained for samples with number‐average molecular weights of ≤104 with the use of 1,8‐dihydroxy‐9(10H)‐anthracenone (dithranol) as a matrix and sodium trifluoroacetate as an added salt. The MS spectra showed only one series of peaks separated exactly by the mass of the IBVE. The observed mass of each peak was in good agreement with the theoretical one, which possesses one initiator fragment at the α end and one methoxy group originated from quenching with methanol at the ω end. Thus, detailed end group analysis is possible for poly(VE). © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4023–4031, 2000  相似文献   

15.
In the cationic polymerization of isobutyl vinyl ether (IBVE) with binary initiating systems consisting of a protonic acid as an initiator and a Lewis acid as an activator/catalyst, phosphoric acid derivatives [(RO)2POOH] coupled with SnCl4 gave highly isotactic poly(IBVE)s, whereas those with a bulky substituent (R), [C4H9CH(C2H5)CH2O]2POOH ( 7 ) and (n‐C10H21)2POOH ( 8 ), led to the highest isotacticity [meso dyad (m) = 86%]. In contrast, isospecificity was lower with IBVE–HCl and CF3COOH under the same conditions. From the effects of the polymerization temperature (−78 to 0 °C), it was concluded that the high isospecificity with 7 and 8 was due to an enthalpic factor. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1067–1074, 2001  相似文献   

16.
Mild thermolysis of Lewis base stabilized phosphinoborane monomers R1R2P? BH2?NMe3 (R1,R2=H, Ph, or tBu/H) at room temperature to 100 °C provides a convenient new route to oligo‐ and polyphosphinoboranes [R1R2P‐BH2]n. The polymerization appears to proceed via the addition/head‐to‐tail polymerization of short‐lived free phosphinoborane monomers, R1R2P‐BH2. This method offers access to high molar mass materials, as exemplified by poly(tert‐butylphosphinoborane), that are currently inaccessible using other routes (e.g. catalytic dehydrocoupling).  相似文献   

17.
This paper discusses the nature of the living growing species in cationic polymerization from the viewpoint of the steric structure of poly(isobutyl vinyl ether) [poly(IBVE)]. At −78 °C, living polymerization was induced with the HCl-IBVE adduct (1)/ZnCl2 system in a EtNO2/CH2Cl2 mixture, whereas similar systems with EtAlCl2 led to conventional cationic polymerization. In this polar medium, both systems gave polymers with very similar and low isotacticity (meso ≈ 56%), indicating that the propagating reaction is mediated by free ions. Thus, regardless of solvent polarity, or involvement of free ions or ion pairs, living cationic polymerization requires a suitably nucleophilic counteranion. As model reactions of the growing species, 1/ZnCl2 and 1/EtAlCl2 were directly analyzed by 1H NMR spectroscopy.  相似文献   

18.
The suspension cationic polymerization of isobutyl vinyl ether (IBVE) in aqueous medium could be achieved by using H3PW12O40, AlPW12O40, FePW12O40, K3PW12O40, or Na3PW12O40 as efficient water‐tolerant coinitiators in the presence of HCl. The addition reaction of IBVE with H2O occurred to form IBVE–H2O adduct and then subsequent decomposition immediately took place or turned to acetaldehyde diisobutyl acetal (A) in the presence of AlPW12O40, and ( A ) decomposed rapidly to form 2‐isobutanol ( B ) and acetaldehyde ( C ). Cationic polymerization of IBVE in aqueous medium was promoted greatly with increasing HCl concentration and proceeded extremely rapidly to get high polymer yield even at low concentration of AlPW12O40 of 0.3 mM. A sufficient amount of HCl was needed to decrease the hydrolysis of initiator IBVE–HCl and to accelerate the polymerization in aqueous medium simultaneously. The yield and molecular weight of poly(IBVE) increased with increasing concentrations of HCl and AlPW12O40 or with decreasing temperature. The isotactic‐rich poly(IBVE)s with m diad of around 60%, having Mn of 1200–4500 g mol?1 and monomodal molecular weight distribution could be obtained via cationic polymerization of IBVE in aqueous medium. This is the first example of cationic polymerization of IBVE in aqueous medium coinitiated by heteropolyacid and its salts. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

19.
Oxoaminium salt ( 1 ), derived from 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO, 2 ) by one-electron oxidation, could be an initiator for cationic polymerization of vinyl monomers such as isobutyl vinyl ether (IBVE), 2,3-dihydrofuran, p-methoxystyrene, N-vinyl pyrrolidone, etc., to give the corresponding polymers, when 1 had a low nucleophilic counter anion. Formation of the adducts of 1 and IBVE as well as 1H-NMR and IR data suggested the formation of polymers containing N? O? C structure as the polymer head group. In the polymerization of IBVE, the effects of solvent and concentration of 1 were little observed, however the polymerization rate was dependent on temperature. Furthermore, the thermal reaction of the polymers obtained, which were regarded as prepolymers for block copolymerization and polymeric initiators for radical polymerization, was studied. For example, poly(2-benzylidene-1,3-dioxane) obtained by the polymerization of 2-benzylidene-1,3-dioxane with oxoaminium hexafluoroantimonate ( 1, X = SbF6) was employed as an initiator for radical polymerization of MMA to give its block copolymer with PMMA. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
The living cationic polymerization of 5‐ethyl‐2‐methyl‐5‐(vinyloxymethyl)‐1,3‐dioxane ( 1 ), a vinyl ether with a cyclic acetal unit, was investigated with various initiating systems in toluene or methylene chloride at 0 to ?30 °C. With initiating systems such as hydrogen chloride (HCl)/zinc chloride (ZnCl2), isobutyl vinyl ether–acetic acid adduct [CH3CH(OiBu)OCOCH3]/tin tetrabromide (SnBr4)/di‐tert‐butylpyridine (DTBP), and CH3CH(OiBu)OCOCH3/ethylaluminum sesquichloride (Et1.5AlCl1.5)/ethyl acetate (CH3COOEt), the number‐average molecular weights (Mn's) of the obtained poly( 1 )s increased in direct proportion to the monomer conversion and produced polymers with relatively narrow molecular weight distributions [MWDs; weight‐average molecular weight/number‐average molecular weight (Mw/Mn) = 1.2–1.3]. To investigate the living nature of the polymerization with CH3CH(OiBu)OCOCH3/SnBr4/DTBP, a second monomer feed was added to the almost polymerized reaction mixture. The added monomer was completely consumed, and the Mn values of the polymers showed a direct increase against the conversion of the added monomer, indicating the formation of a long‐lived propagating species. The glass transition temperature and thermal decomposition temperature of poly( 1 ) (e.g., Mn = 13,600, Mw/Mn = 1.30) were 29 and 308 °C, respectively. The cyclic acetal group in the pendants of the polymer of 1 could be converted to the corresponding two hydroxy groups in a 65% yield by an acid‐catalyzed hydrolysis reaction. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4855–4866, 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号