首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
A method for simulating two‐phase flows including surface tension is presented. The approach is based upon smoothed particle hydrodynamics (SPH). The fully Lagrangian nature of SPH maintains sharp fluid–fluid interfaces without employing high‐order advection schemes or explicit interface reconstruction. Several possible implementations of surface tension force are suggested and compared. The numerical stability of the method is investigated and optimal choices for numerical parameters are identified. Comparisons with a grid‐based volume of fluid method for two‐dimensional flows are excellent. The methods presented here apply to problems involving interfaces of arbitrary shape undergoing fragmentation and coalescence within a two‐phase system and readily extend to three‐dimensional problems. Boundary conditions at a solid surface, high viscosity and density ratios, and the simulation of free‐surface flows are not addressed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A modified front‐tracking method was proposed for the simulation of fluid‐flexible body interactions with large deformations. A large deformable body was modeled by restructuring the body using a grid adaptation. Discontinuities in the viscosity at the fluid‐structure interface were incorporated by distributing the viscosity across the interface using an indicator function. A viscosity gradient field was created near the interface, and a smooth transition occurred between the structure and the fluid. The fluid motion was defined on the Eulerian domain and was solved using the fractional step method on a staggered Cartesian grid system. The solid motion was described by Lagrangian variables and was solved by the finite element method on an unstructured triangular mesh. The fluid motion and the structure motion were independently solved, and their interaction force was calculated using a feedback law. The interaction force was the restoring force of a stiff spring with damping, and spread from the Lagrangian coordinates to the Eulerian grid by a smoothed approximation of the Dirac delta function. In the numerical simulations, we validated the effect of the grid adaptation on the solid solver using a vibrating circular ring. The effects of the viscosity gradient field were verified by solving the deformation of a circular disk in a linear shear flow, including an elastic ring moving through a channel with constriction, deformation of a suspended catenary, and a swimming jellyfish. A comparison of the numerical results with the theoretical solutions was presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
A numerical method is developed for solving the 3D, unsteady, incompressible Navier–Stokes equations in curvilinear coordinates containing immersed boundaries (IBs) of arbitrary geometrical complexity moving and deforming under forces acting on the body. Since simulations of flow in complex geometries with deformable surfaces require special treatment, the present approach combines a hybrid immersed boundary method (HIBM) for handling complex moving boundaries and a material point method (MPM) for resolving structural stresses and movement. This combined HIBM & MPM approach is presented as an effective approach for solving fluid–structure interaction (FSI) problems. In the HIBM, a curvilinear grid is defined and the variable values at grid points adjacent to a boundary are forced or interpolated to satisfy the boundary conditions. The MPM is used for solving the equations of solid structure and communicates with the fluid through appropriate interface‐boundary conditions. The governing flow equations are discretized on a non‐staggered grid layout using second‐order accurate finite‐difference formulas. The discrete equations are integrated in time via a second‐order accurate dual time stepping, artificial compressibility scheme. Unstructured, triangular meshes are employed to discretize the complex surface of the IBs. The nodes of the surface mesh constitute a set of Lagrangian control points used for tracking the motion of the flexible body. The equations of the solid body are integrated in time via the MPM. At every instant in time, the influence of the body on the flow is accounted for by applying boundary conditions at stationary curvilinear grid nodes located in the exterior but in the immediate vicinity of the body by reconstructing the solution along the local normal to the body surface. The influence of the fluid on the body is defined through pressure and shear stresses acting on the surface of the body. The HIBM & MPM approach is validated for FSI problems by solving for a falling rigid and flexible sphere in a fluid‐filled channel. The behavior of a capsule in a shear flow was also examined. Agreement with the published results is excellent. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
A robust, accurate, and computationally efficient interface tracking algorithm is a key component of an embedded computational framework for the solution of fluid–structure interaction problems with complex and deformable geometries. To a large extent, the design of such an algorithm has focused on the case of a closed embedded interface and a Cartesian computational fluid dynamics grid. Here, two robust and efficient interface tracking computational algorithms capable of operating on structured as well as unstructured three‐dimensional computational fluid dynamics grids are presented. The first one is based on a projection approach, whereas the second one is based on a collision approach. The first algorithm is faster. However, it is restricted to closed interfaces and resolved enclosed volumes. The second algorithm is therefore slower. However, it can handle open shell surfaces and underresolved enclosed volumes. Both computational algorithms exploit the bounding box hierarchy technique and its parallel distributed implementation to efficiently store and retrieve the elements of the discretized embedded interface. They are illustrated, and their respective performances are assessed and contrasted, with the solution of three‐dimensional, nonlinear, dynamic fluid–structure interaction problems pertaining to aeroelastic and underwater implosion applications. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
We present a nodal Godunov method for Lagrangian shock hydrodynamics. The method is designed to operate on three‐dimensional unstructured grids composed of tetrahedral cells. A node‐centered finite element formulation avoids mesh stiffness, and an approximate Riemann solver in the fluid reference frame ensures a stable, upwind formulation. This choice leads to a non‐zero mass flux between control volumes, even though the mesh moves at the fluid velocity, but eliminates volume errors that arise due to the difference between the fluid velocity and the contact wave speed. A monotone piecewise linear reconstruction of primitive variables is used to compute interface unknowns and recover second‐order accuracy. The scheme has been tested on a variety of standard test problems and exhibits first‐order accuracy on shock problems and second‐order accuracy on smooth flows using meshes of up to O(106) tetrahedra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
7.
The Runge-Kutta discontinuous Galerkin method together with a refined real-ghost fluid method is incorporated into an adaptive mesh refinement environment for solving compressible multifluid flows, where the level set method is used to capture the moving material interface. To ensure that the Riemann problem is exactly along the normal direction of the material interface, a simple and efficient modification is introduced into the original real-ghost fluid method for constructing the interfacial Riemann problem, and the initial conditions of the Riemann problem are obtained directly from the solution polynomials of the discontinuous Galerkin finite element space. In addition, a positivity-preserving limiter is introduced into the Runge-Kutta discontinuous Galerkin method to suppress the failure of preserving positivity of density or pressure for the problems involving strong shock wave or shock interaction with material interface. For interfacial cells in adaptive mesh refinement, the data transfer between different grid levels is achieved by using a L2 projection approach along with the least squares fitting. Various numerical cases, including multifluid shock tubes, underwater explosions, and shock-induced collapse of a underwater air bubble, are computed to assess the capability of the present adaptive positivity-preserving RKDG-GFM approach, and the simulated results show that the present approach is quite robust and can provide relatively reasonable results across a wide variety of flow regimes, even for problems involving strong shock wave or shock wave impacting high acoustic impedance mismatch material interface.  相似文献   

8.
9.
A novel parallel monolithic algorithm has been developed for the numerical simulation of large‐scale fluid structure interaction problems. The governing incompressible Navier–Stokes equations for the fluid domain are discretized using the arbitrary Lagrangian–Eulerian formulation‐based side‐centered unstructured finite volume method. The deformation of the solid domain is governed by the constitutive laws for the nonlinear Saint Venant–Kirchhoff material, and the classical Galerkin finite element method is used to discretize the governing equations in a Lagrangian frame. A special attention is given to construct an algorithm with exact total fluid volume conservation while obeying both the global and the local discrete geometric conservation law. The resulting large‐scale algebraic nonlinear equations are multiplied with an upper triangular right preconditioner that results in a scaled discrete Laplacian instead of a zero block in the original system. Then, a one‐level restricted additive Schwarz preconditioner with a block‐incomplete factorization within each partitioned sub‐domains is utilized for the modified system. The accuracy and performance of the proposed algorithm are verified for the several benchmark problems including a pressure pulse in a flexible circular tube, a flag interacting with an incompressible viscous flow, and so on. John Wiley & Sons, Ltd.  相似文献   

10.
This paper presents an approach to develop high‐order, temporally accurate, finite element approximations of fluid‐structure interaction (FSI) problems. The proposed numerical method uses an implicit monolithic formulation in which the same implicit Runge–Kutta (IRK) temporal integrator is used for the incompressible flow, the structural equations undergoing large displacements, and the coupling terms at the fluid‐solid interface. In this context of stiff interaction problems, the fully implicit one‐step approach presented is an original alternative to traditional multistep or explicit one‐step finite element approaches. The numerical scheme takes advantage of an arbitrary Lagrangian–Eulerian formulation of the equations designed to satisfy the geometric conservation law and to guarantee that the high‐order temporal accuracy of the IRK time integrators observed on fixed meshes is preserved on arbitrary Lagrangian–Eulerian deforming meshes. A thorough review of the literature reveals that in most previous works, high‐order time accuracy (higher than second order) is seldom achieved for FSI problems. We present thorough time‐step refinement studies for a rigid oscillating‐airfoil on deforming meshes to confirm the time accuracy on the extracted aerodynamics reactions of IRK time integrators up to fifth order. Efficiency of the proposed approach is then tested on a stiff FSI problem of flow‐induced vibrations of a flexible strip. The time‐step refinement studies indicate the following: stability of the proposed approach is always observed even with large time step and spurious oscillations on the structure are avoided without added damping. While higher order IRK schemes require more memory than classical schemes (implicit Euler), they are faster for a given level of temporal accuracy in two dimensions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
We present a fixed‐grid finite element technique for fluid–structure interaction problems involving incompressible viscous flows and thin structures. The flow equations are discretised with isoparametric b‐spline basis functions defined on a logically Cartesian grid. In addition, the previously proposed subdivision‐stabilisation technique is used to ensure inf–sup stability. The beam equations are discretised with b‐splines and the shell equations with subdivision basis functions, both leading to a rotation‐free formulation. The interface conditions between the fluid and the structure are enforced with the Nitsche technique. The resulting coupled system of equations is solved with a Dirichlet–Robin partitioning scheme, and the fluid equations are solved with a pressure–correction method. Auxiliary techniques employed for improving numerical robustness include the level‐set based implicit representation of the structure interface on the fluid grid, a cut‐cell integration algorithm based on marching tetrahedra and the conservative data transfer between the fluid and structure discretisations. A number of verification and validation examples, primarily motivated by animal locomotion in air or water, demonstrate the robustness and efficiency of our approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A moment‐of‐fluid method is presented for computing solutions to incompressible multiphase flows in which the number of materials can be greater than two. In this work, the multimaterial moment‐of‐fluid interface representation technique is applied to simulating surface tension effects at points where three materials meet. The advection terms are solved using a directionally split cell integrated semi‐Lagrangian algorithm, and the projection method is used to evaluate the pressure gradient force term. The underlying computational grid is a dynamic block‐structured adaptive grid. The new method is applied to multiphase problems illustrating contact‐line dynamics, triple junctions, and encapsulation in order to demonstrate its capabilities. Examples are given in two‐dimensional, three‐dimensional axisymmetric (RZ), and three‐dimensional (XYZ) coordinate systems. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
An Eulerian–Lagrangian approach is developed for the simulation of turbulent bubbly flows in complex systems. The liquid phase is treated as a continuum and the Navier–Stokes equations are solved in an unstructured grid, finite volume framework for turbulent flows. The dynamics of the disperse phase is modeled in a Lagrangian frame and includes models for the motion of each individual bubble, bubble size variations due to the local pressure changes, and interactions among the bubbles and with boundaries. The bubble growth/collapse is modeled by the Rayleigh–Plesset (RP) equation. Three modeling approaches are considered: (a) one‐way coupling, where the influence of the bubble on the fluid flow is neglected, (b) two‐way coupling, where the momentum‐exchange between the fluid and the bubbles is modeled, and (c) volumetric coupling, where the volumetric displacement of the fluid by the bubble motion and the momentum‐exchange are modeled. A novel adaptive time‐stepping scheme based on stability‐analysis of the non‐linear bubble dynamics equations is developed. The numerical approach is verified for various single bubble test cases to show second‐order accuracy. Interactions of multiple bubbles with vortical flows are simulated to study the effectiveness of the volumetric coupling approach in predicting the flow features observed experimentally. Finally, the numerical approach is used to perform a large‐eddy simulation in two configurations: (i) flow over a cavity to predict small‐scale cavitation and inception and (ii) a rising dense bubble plume in a stationary water column. The results show good predictive capability of the numerical algorithm in capturing complex flow features. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
We develop a second‐order accurate Navier–Stokes solver based on r‐adaptivity of the underlying numerical discretization. The motion of the mesh is based on the fluid velocity field; however, certain adjustments to the Lagrangian velocities are introduced to maintain quality of the mesh. The adjustments are based on the variational approach of energy minimization to redistribute grid points closer to the areas of rapid solution variation. To quantify the numerical diffusion inherent to each method, we monitor changes in the background potential energy, computation of which is based on the density field. We demonstrate on a standing interfacial gravity wave simulation how using our method of grid evolution decreases the rate of increase of the background potential energy compared with using the same advection scheme on the stationary grid. To further highlight the benefit of the proposed moving grid method, we apply it to the nonhydrostatic lock‐exchange flow where the evolution of the interface is more complex than in the standing wave test case. Naive grid evolution based on the fluid velocities in the lock‐exchange flow leads to grid tangling as Kelvin–Helmholtz billows develop at the interface. This is remedied by grid refinement using the variational approach. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
A method for direct numerical analysis of three‐dimensional deformable particles suspended in fluid is presented. The flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method (LBM), where each solid particle is mapped onto a Lagrangian frame moving continuously through the domain. Instead of the bounce‐back method, an external boundary force (EBF) is used to impose the no‐slip boundary condition at the fluid–solid interface for stationary or moving boundaries. The EBF is added directly to the lattice Boltzmann equation. The motion and orientation of the particles are obtained from Newtonian dynamics equations. The advantage of this approach is outlined in comparison with the standard and higher‐order interpolated bounce‐back methods as well as the LBM immersed‐boundary and the volume‐of‐fluid methods. Although the EBF method is general, in this application, it is used in conjunction with the lattice–spring model for deformable particles. The methodology is validated by comparing with experimental and theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The representation of geometries as buildings, flood barriers or dikes in free surface flow models implies tedious and time‐consuming operations in order to define accurately the shape of these objects when using a body fitted numerical mesh. The immersed boundary method is an alternative way to define solid bodies inside the computational domain without the need of fitting the mesh boundaries to the shape of the object. In the direct forcing immersed boundary method, a solid body is represented by a grid of Lagrangian markers, which define its shape and which are independent from the fluid Eulerian mesh. This paper presents a new implementation of the immersed boundary method in an unstructured finite volume solver for the 2D shallow water equations. Moving least‐squares is used to transmit information between the grid of Lagrangian markers and the fluid Eulerian mesh. The performance of the proposed implementation is analysed in three test cases involving different flow conditions: the flow around a spur dike, a dam break flow with an isolated obstacle and the flow around an array of obstacles. A very good agreement between the classic body fitted approach and the immersed boundary method was found. The differences between the results obtained with both methods are less relevant than the errors because of the intrinsic shallow water assumptions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
We present a method for the parallel numerical simulation of transient three‐dimensional fluid–structure interaction problems. Here, we consider the interaction of incompressible flow in the fluid domain and linear elastic deformation in the solid domain. The coupled problem is tackled by an approach based on the classical alternating Schwarz method with non‐overlapping subdomains, the subproblems are solved alternatingly and the coupling conditions are realized via the exchange of boundary conditions. The elasticity problem is solved by a standard linear finite element method. A main issue is that the flow solver has to be able to handle time‐dependent domains. To this end, we present a technique to solve the incompressible Navier–Stokes equation in three‐dimensional domains with moving boundaries. This numerical method is a generalization of a finite volume discretization using curvilinear coordinates to time‐dependent coordinate transformations. It corresponds to a discretization of the arbitrary Lagrangian–Eulerian formulation of the Navier–Stokes equations. Here the grid velocity is treated in such a way that the so‐called Geometric Conservation Law is implicitly satisfied. Altogether, our approach results in a scheme which is an extension of the well‐known MAC‐method to a staggered mesh in moving boundary‐fitted coordinates which uses grid‐dependent velocity components as the primary variables. To validate our method, we present some numerical results which show that second‐order convergence in space is obtained on moving grids. Finally, we give the results of a fully coupled fluid–structure interaction problem. It turns out that already a simple explicit coupling with one iteration of the Schwarz method, i.e. one solution of the fluid problem and one solution of the elasticity problem per time step, yields a convergent, simple, yet efficient overall method for fluid–structure interaction problems. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

19.
An artificial viscosity, originally designed for Eulerian schemes, is adapted for use in arbitrary Lagrangian–Eulerian simulations. Changes to the Eulerian model (dubbed ‘hyperviscosity’) are discussed, which enable it to work within a Lagrangian framework. New features include a velocity-weighted grid scale and a generalised filtering procedure, applicable to either structured or unstructured grids. The model employs an artificial shear viscosity for treating small-scale vorticity and an artificial bulk viscosity for shock capturing. The model is based on the Navier–Stokes form of the viscous stress tensor, including the diagonal rate-of-expansion tensor. A second-order version of the model is presented, in which Laplacian operators act on the velocity divergence and the grid-weighted strain-rate magnitude to ensure that the velocity field remains smooth at the grid scale. Unlike sound-speed-based artificial viscosities, the hyperviscosity model is compatible with the low Mach number limit. The new model outperforms a commonly used Lagrangian artificial viscosity on a variety of test problems.  相似文献   

20.
A complete set of equivalence conditions, relating the mass‐lumped Bubnov–Galerkin finite element (FE) scheme for Lagrangian linear elements to node‐centred finite volume (FV) schemes, is derived for the first time for conservation laws in a three‐dimensional cylindrical reference. Equivalence conditions are used to devise a class of FV schemes, in which all grid‐dependent quantities are defined in terms of FE integrals. Moreover, all relevant differential operators in the FV framework are consistent with their FE counterparts, thus opening the way to the development of consistent hybrid FV/FE schemes for conservation laws in a three‐dimensional cylindrical coordinate system. The two‐dimensional schemes for the polar and the axisymmetrical cases are also explicitly derived. Numerical experiments for compressible unsteady flows, including expanding and converging shock problems and the interaction of a converging shock waves with obstacles, are carried out using the new approach. The results agree fairly well with one‐dimensional simulations and simplified models. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号