首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 733 毫秒
1.
刘玲玲  李冰宁  武彦文 《色谱》2021,39(8):905-912
为加强对土壤中石油烃类污染物的风险管控,生态环境部已将石油烃类列为土壤中的重点监测项目。石油烃源于石油与合成油,是涵盖一定碳数范围的碳氢化合物,主要分为饱和烃和芳香烃两大类。芳香烃通常是高度烷基化的单环、双环与多环芳烃,其对人和动物的毒性较饱和烃大很多,因此,仅仅测定土壤中总石油烃含量难以准确评估其环境毒性。目前环境领域的标准方法尚未区分土壤中饱和烃和芳香烃。该研究针对土壤样品的基质干扰特点,对样品的提取和净化环节进行了优化,并且应用高效液相色谱-气相色谱在线联用(HPLC-GC)技术,建立了同时测定土壤中饱和烃和芳香烃的方法。其中,提取方法选择正己烷-乙醇(1∶1, v/v)以固液比1∶4常温振荡提取1 h,然后水洗去除乙醇,取正己烷层提取液净化;净化方法选择自制硅胶柱,以正己烷-二氯甲烷(8∶2, v/v)洗脱;洗脱液经浓缩注入HPLC-GC分析,以内标法同时测定试液中的饱和烃和芳香烃,方法的定量限为0.4 mg/kg。该方法经过土壤石油烃标准物(SQC-116)验证,测定值在证书提供的可信区间内,相对误差(RE)为10.6%,相对标准偏差(RSD)为1.4%,说明方法准确可靠且精密度达到分析要求。最后,该文采用建立的方法检测了北京地区的5个土壤样品,结果表明:5个样品均含有饱和烃(C10~C40),其含量范围为3.3~32.1 mg/kg;其中4个样品中检出芳香烃(C10~C40),其含量范围为0.8~4.3 mg/kg;此外,通过谱图分析还可以初步判别烃类物质的污染来源。  相似文献   

2.
复杂基体中痕量多环芳烃分析测定方法的研究进展   总被引:15,自引:0,他引:15  
董新艳  杨亦文  任其龙 《色谱》2005,23(6):609-615
介绍了环境样品(水和土壤)以及植物油中痕量多环芳烃的分析检测方法。对样品的预处理过程和分析方法做了评价。采用一些新的预处理方法(包括液相色谱法、固相萃取法、超临界二氧化碳萃取法),并结合色谱-质谱在线联用分析检测方法能够获得比较理想的分析结果。引用文献52篇。  相似文献   

3.
An analytical scheme to determine groups of petroleum hydrocarbon compounds in crude oil was developed and used for the qualitative and quantitative characterization of crude oil samples from the Shengli oilfield, the second largest oilfield in China. Crude oil samples were fractionated and analyzed by thin-layer chromatography with flame ionization detection (TLC-FID). Relative standard deviation (RSD) values for retention time, peak height and half peak width were less than 5.2% for all classes of compounds, based on nine independent replicates. The crude oil light fraction was further analyzed by GC–MS and the majority of identified compounds were methyl- or hydro-derivatives of long-chain hydrocarbons and aromatic compounds. The external standard method used in the present study can lower detection limits of petroleum hydrocarbon compound classes to 20.0 mg L−1, and the crude oil concentration in the range of 30 and 35,000 mg L−1 has a high linear correlation (r2 > 0.97, P < 0.05) with peak area. A comparison between elution chromatography (EC) and TLC-FID regarding the recovery of petroleum hydrocarbon compounds was carried out with aged crude oil contaminated soils of 50, 80, 200 and 300 mg g−1. The tested TLC-FID method showed a 10% higher recovery for total extractable materials than the reference EC method. The calibration factor was fraction-dependent and varied with the recovery rate of TLC/EC. Regarding the tested extraction procedures, accelerated solvent extraction (ASE) had a higher extraction efficiency for crude oil contaminated soils than Soxhlet and ultrasonic extractions.  相似文献   

4.
Yang M  Yang Y  Qu F  Lu Y  Shen G  Yu R 《Analytica chimica acta》2006,567(2):211-217
Anilinemethyltriethoxysilane (AMTEOS) was first used as precursor as well as selective stationary phase to prepare the sol-gel derived anilinemethyltriethoxysilane/polydimethylsiloxane (AMTEOS/PDMS) solid-phase microextraction (SPME) fibers. The novel SPME fiber exhibits high extraction efficiency, good thermal stability and long lifetime compared with commercial SPME coatings. In addition, the phenyl groups in the porous layer can exhibit π-π interactions with aromatic compounds, such as monocyclic aromatic hydrocarbons (MAHs) and polycyclic aromatic hydrocarbons (PAHs). Therefore, SPME using the AMTEOS/PDMS sol-gel fiber coupled with GC-FID was recommended as a sensitive and selective method towards the analysis of these compounds in environmental water samples. The optimal extraction conditions were investigated by adjusting extraction time, salt addition, extraction temperature, and desorption time. The method showed linearity between 2 and 4000 μg l−1 for MAHs and 1 and 1000 μg l−1 for PAHs. The limit of detection (LOD) was 0.6-3.8 μg l−1for MAHs and 0.2-1.5 μg l−1 for PAHs. The novel AMTEOS/PDMS fiber was applied to extract small amount of aromatic compounds in wastewater and river water respectively. The recovery of the method was acceptable for quantitative analysis.  相似文献   

5.
The paper reports a direct method for the determination of pyridine in water and wastewater samples based on ultraviolet spectrophotometric measurements using multi-way modeling techniques. Parallel factor analysis (PARAFAC) and multi-way partial least squares (N-PLS) regression methods were employed for the decomposition of spectra and quantification of pyridine. The study was carried out in the pH range of 1.0-12.0 and concentration range of 0.67-51.7 μg mL−1 of pyridine. Both the three-way PARAFAC and tri-PLS1 models successfully predicted the concentration of pyridine in synthetic (spiked) river water and field wastewater samples. The mean recovery obtained from PARAFAC regression model were 97.39% for the spiked and 99.84% for the field wastewater samples, respectively. The sensitivity and precision of the method for pyridine determination were 0.58% and 5.95%, respectively. The N-PLS regression model yielded mean recoveries of 99.29% and 100.18% for the spiked and field wastewater samples, respectively. The prediction accuracy of the methods was evaluated through the root mean square error of prediction (RMSEP). For PARAFAC, it was 0.65 and 0.82 μg mL−1 for spiked river water and field wastewater samples, respectively, while for N-PLS, it was 0.25 and 0.37 μg mL−1, respectively. Both the PARAFAC and N-PLS methods, thus, yielded satisfactory results for the prediction of pyridine concentration in water and wastewater samples.  相似文献   

6.
A novel method to determine of azaarenes in refined and cold‐pressed vegetable oils and animal fats is reported. The method may be used to determine eight most important acridine derivatives (benz[a]acridine, dibenz[a,i]acridine, benz[c]acridine, dibenz[a,j]acridine, 7,9‐dimethylbenz[c]acridine, dibenz[a,h]acridine, dibenz[a,c]acridine, dibenz[c,h]acridine) at a high sensitivity (LOQ in the 2–25 ng kg?1 range), high analyte recovery rates (70.7–98.7%), sufficient linearity within the studied concentration range (r > 0.97). The method is fast, simple, and needs no expensive clean‐up procedures to successfully determine the analytes. Azaarene concentration in the studied oil samples ranged from 2 to 250 ng kg?1. Benz[a]acridine and dibenz[a,j]acridine were the compounds found most commonly and at the highest concentrations. The observed concentrations most probably reflected levels of environmental contamination of raw materials used to produce the analyzed oil/fat samples.  相似文献   

7.
Ye R  Su J 《色谱》2011,29(7):618-623
建立了果蔬、牛奶、植物油和动物肌肉中61种有机磷农药多残留的分析方法。果蔬和牛奶样品用乙腈均质提取,盐析分配;植物油样品用正己烷溶解,乙腈萃取;动物肌肉样品用正己烷配合乙腈-水溶液均质提取,盐析分配。各提取法得到的提取液采用C18和Primary Secondary Amine (PSA)粉末分散固相萃取净化,超高效液相色谱-串联质谱仪(UPLC-MS/MS)分析,采用电喷雾离子化正离子方式(ESI+)及多反应监测模式(MRM)测定,基质匹配标准溶液外标法定量。方法的定量限(S/N≥10)均达到0.01 mg/kg;回收率为62.8%~107%,相对标准偏差为4.2%~19%。该方法准确、灵敏、快速,可满足多种食品中有机磷农药残留的检测要求。  相似文献   

8.
A case study is presented for the forensic identification of several spilled biodiesels and its blends with petroleum oil using integrated forensic oil fingerprinting techniques. The integrated fingerprinting techniques combined SPE with GC/MS for obtaining individual petroleum hydrocarbons (aliphatic hydrocarbons, polyaromatic hydrocarbons and their alkylated derivatives and biomarkers), and biodiesel hydrocarbons (fatty acid methyl esters, free fatty acids, glycerol, monoacylglycerides, and free sterols). HPLC equipped with evaporative scattering laser detector was also used for identifying the compounds that conventional GC/MS could not finish. The three environmental samples (E1, E2, and E3) and one suspected source sample (S2) were dominant with vegetable oil with high acid values and low concentration of fatty acid methyl ester. The suspected source sample S2 was responsible for the three spilled samples although E1 was slightly contaminated by petroleum oil with light hydrocarbons. The suspected source sample S1 exhibited with the high content of glycerol, low content of glycerides, and high polarity, indicating its difference from the other samples. These samples may be the separated byproducts in producing biodiesel. Canola oil source is the most possible feedstock for the three environmental samples and the suspected source sample S2.  相似文献   

9.
The problems of the application of total indices “phenolic index” and “petroleum products” for water quality assessment are considered. It is demonstrated that these indices do not reflect the actual contamination of aquatic media by phenols and petroleum hydrocarbons. The effect of hydrocarbons of different classes on the error in determining petroleum products was revealed. The presence of phenols and other organic compounds was found to affect the results of the determination of the phenolic index. It is necessary to identify pollutants contained in wastewater to assess the applicability of total indices in the analysis of such waters. Marker components of wastewater must be included in the research program, in addition to total indices.  相似文献   

10.
Real-time measurement of total oil concentration in complex samples is required in wastewater discharge streams from ships and processing industries. A novel technology has been developed for the accurate quantification of a variety of single oils and their mixtures. Four major types of oils (lube oils 2190 and 9250, diesel fuel marine (DFM), and jet fuel (JP5)), each of which consisted of a dozen subtypes of oil samples, were examined to obtain both fluorescence and light scattering spectra as a function of concentration of single oils and mixtures. Tremendous variations in both fluorescence and scattering were observed among oil types, subtypes, and mixtures. The spectral response of an oil mixture was not the simple summation of respective single oils. To account for all these variations, a multivariate, nonlinear calibration method is applied to associate instrumental responses with oil concentrations using artificial neural networks (ANNs). The neural network architecture has been established by optimizing network parameters such as epochs, the number of neurons in the hidden layer, and learning rates in order to achieve the maximum accuracy of oil concentration measurements. It is demonstrated that the simultaneous, combined use of fluorescence and light scattering significantly improves the accuracy of measurement for oil samples. The newly developed technique permits the reliable, real-time determination of the total concentration of various oils and mixtures in water.  相似文献   

11.
A flow-switching two-dimensional gas chromatography (GCxGC) apparatus has been constructed that can operate at temperatures as high as 340 degrees C. This system is employed to analyze complex hydrocarbon mixtures such as diesel fuel, gas-oil, motor oil, and petroleum contaminated environmental samples. The GCxGC system generates two-dimensional chromatograms with minimal overlap between the aliphatic and aromatic regions This allows these compound classes to be independently quantitated without prior fractionation. The GCxGC system is used to analyze extracts of spiked water samples, wastewater, and soil. The accuracy of the method is compared to that of the Massachusetts Extractable Petroleum Hydrocarbons (MA EPH) method. The GCxGC system generates a quantitative accuracy similar to the MA EPH method for the analysis of spiked water samples. The GCxGC method and the MA EPH method generate comparable levels of total hydrocarbons when wastewater is analyzed, but the GCxGC method detects a significantly higher aromatic content and lower aliphatic content. Both the GCxGC method and MA EPH method measure comparable levels of aromatics in the soil samples.  相似文献   

12.
改进了利用荧光分光光度计测定水质石油类样品的分析方法.水质石油样品采用正己烷提取,经硅酸镁净化后使用荧光分光光度计检测.经过优化,方法曲线线性在0.999以上,检出限为0.007 mg/L.经过3种地表水、1种地下水以及2种工业废水的验证,回收率为87.5%~110.0%.分别使用紫外法、红外法与荧光光度法进行比对,地...  相似文献   

13.
An improved analytical method for determination of human pharmaceuticals in natural and wastewaters with ng L−1 sensitivity is presented. The method is applicable to pharmaceuticals from a wide range of therapeutic classes including antibiotics, analgesics, anti-inflammatories and anti-cancer compounds. Pharmaceuticals were extracted from waters using solid-phase extraction, and after concentration, analysed by high performance liquid chromatography with tandem mass spectrometric detection (HPLC-MS/MS). Identification of each compound was secured using retention time and by the selected reaction monitoring of two transitions, one of which was additionally used for quantification. Limits of detection ranged from 0.03 to 0.96 ng L−1 and were up to two orders of magnitude lower than those of previously published methods. The method was validated using spiked samples prepared from tap, river and sea water as well as wastewater effluents, collected from the North of Scotland. Analysis of wastewater effluents revealed the presence of mefenamic acid, ibuprofen, erythromycin, diclofenac and trimethoprim. None of the selected pharmaceuticals were detected in river, tap or sea water samples.  相似文献   

14.
This paper presents the development, optimization and validation of a LC–MS/MS methodology to determine the antiparasitic veterinary drug toltrazuril and its two main metabolites, toltrazuril sulfoxide and toltrazuril sulfone, in environmental surface water, soil and animal manure. Using solid phase extraction and selective pressurized liquid extraction with integrated clean-up, the analytical method allows for the determination of these compounds down to 0.06–0.13 ng L−1 in water, 0.01–0.03 ng g−1 dw in soil and 0.22–0.51 ng g−1 dw in manure. The deuterated analog of toltrazuril was used as internal standard, and ensured method accuracy in the range 96–123% for water and 77–110% for soil samples. The developed method can also be applied to simultaneously determine steroid hormones in the solid samples. The antiparasitic drug and its metabolites were found in manure and soil up to 114 and 335 pg g−1 dw, respectively. Little is known regarding the environmental fate and effects of these compounds; consequently more research is urgently needed.  相似文献   

15.
The application of sulfur microparticles as efficient adsorbents for the solid-phase extraction (SPE) and determination of trace amounts of 10 polycyclic aromatic hydrocarbons (PAHs) was investigated in sea water and wastewater samples using high performance liquid chromatography coupled with an ultraviolet detector (HPLC–UV). Parameters influencing the preconcentration of PAHs such as the amount of sulfur, solution flow rate and volume, elution solvent, type and concentration of organic modifier, and salt effect were examined. The results showed that at a flow rate of 10 mL min−1 for the sample solutions (100 mL), the PAHs could be adsorbed on the sulfur microparticles and then eluted by 2.0 mL of acetonitrile. For HPLC–UV analysis of extracted PAHs, the calibration curves were linear in the range of 0.05–80.0 μg L−1; the coefficients of determinations (r2) were between 0.9934 and 0.9995. The relative standard deviations (RSDs) for eight replicates at two concentration levels (0.5 and 4.0 μg L−1) of PAHs were lower than 7.3%, under optimized conditions. The limits of detection (LODs, <!-- no-mfc -->S/N<!-- /no-mfc --> = 3) of the proposed method for the studied PAHs were 0.007–0.048 μg L−1. The recoveries of spiked PAHs (0.5 and 4 μg L−1) in the wastewater and sea water samples ranged from 78% to 108%. The simplicity of experimental procedure, high extraction efficiency, short sample analysis, and using of low cost sorbent demonstrate the potential of this approach for routine trace PAH analysis in water and wastewater samples.  相似文献   

16.
A fast, simple, non-destructive method for the direct screening of polycyclic aromatic hydrocarbons (PAHs) in vegetable oil samples is proposed. The method uses a supercritical fluid extraction (SFE) system coupled on-line with a fluorimetric detector to determine PAHs. This special assembly avoids the main problems encountered in the determination of PAHs in complex matrices such as vegetable oils. PAHs are selectively extracted by using silica gel in the thimble and cleaned up by passage through a C18 column. Interferences are preferentially retained by the silica gel during the SFE process while PAHs are adsorbed in the C18 column and the remainder of the matrix is sent to waste. Finally, the C18 column is purged to remove residual CO2 gas and adsorbed PAHs are recovered by desorption with a solvent. The extracts from positive samples are subsequently analyzed by liquid chromatography (LC) with fluorescence detection. The proposed method allows the confirmation of vegetable oil safety and hence provides a new tool for consumer protection.  相似文献   

17.
Interlaboratory comparisons for the analysis of mineral oil in polluted soil using the GC–FID method indicate that extraction and cleanup conditions have significant effects on the analytical results. In this investigation a ruggedness test was performed on the extraction and cleanup method for the determination of total petroleum hydrocarbons in soil. A two-level Plackett–Burman design was utilized to study the effect of 11 different method parameters on the extraction recovery of total petroleum hydrocarbons (TPH) in soil. Both qualitative and quantitative factors were investigated. The results indicate that total petroleum hydrocarbons can be relatively reliably monitored through strict implementation of the ISO and CEN draft standards. However, variation in certain method parameters readily affects the validity of the results. The most critical factors affecting TPH recovery were the solvent and co-solvent used for extraction, the extraction time, adsorbent and its weight and sample TPH concentration. Because adaptation of the draft standards especially with respect to these factors easily leads to TPH recoveries higher than 200% or lower than 70%, the validity of the adapted method should always be verified. A proper estimate of the expanded uncertainty should also be appended to TPH results, because only then can the reliability of the results be guaranteed and further justification is gained to support the end-use of the data. This also supports the credibility of the analytical services and prevents the data end-users from drawing misleading conclusions concerning the environmental risks and potential remediation requirements.  相似文献   

18.
A simple, integrated method for the speciation of chromium in wastewater and sewage sludge was developed, utilising liquid anion exchange by Amberlite LA-2 (LAES) and final determination by electrothermal atomic absorption spectrometry (ETAAS). Samples were filtered through a 0.45 μm membrane filter and chromium species were determined in filtered water samples and in sludge on the filters. In the former case (filtrate), total Cr was determined directly by ETAAS, while for the determination of Cr(VI) the filtrate was buffered to pH 6.4, extracted with LAES and Cr(VI) was determined in the organic extract. Cr(III) was determined by the difference. In the latter case (filter), the filters were leached with an alkaline buffer solution (pH 12.7) and the supernatant was subjected to the same extraction procedure. For the determination of total leachable Cr, the filters were subjected to acid leaching with dilute HNO3 (pH 1) and the supernatant was subjected to ETAAS, after appropriate dilution with water. Then, Cr(III) was determined by the difference. The limits of detection (LOD) were 0.39 and 0.45 μg l−1 for total Cr and Cr(VI), respectively, in the dissolved phase and 2.10 and 0.87 ng g−1 for total Cr and Cr(VI) in the suspended solids. The recoveries of total Cr and Cr(VI) in filtrated wastewater samples and filters were quantitative, ranged from 93 to 106%. The effect of time and temperature of sonication and suspended solids concentration on total Cr and Cr(VI) recovery was studied. No significant difference in recoveries was obtained for sonication temperatures between 30 and 70 °C. However, sonication time equal to or higher than 30 min and concentration of suspended solids equal to or less than 30 mg significantly improved Cr recovery. The ETAAS program for the determination of Cr(VI) in Amberlite/MIBK extract was carefully optimised in the absence of a chemical modifier to avoid memory effects. The developed analytical method was applied for the determination of chromium species in wastewater and suspended solids of a municipal and a lab-scale wastewater treatment plant.  相似文献   

19.
Graphene, a novel class of carbon nanostructures, has great promise for use as sorbent materials because of its ultrahigh specific surface area. A new method using a column packed with graphene as sorbent was developed for the preconcentration of trace amounts of lead (Pb) using dithizone as chelating reagent prior to its determination by flame atomic absorption spectrometry. Some effective parameters on the extraction and complex formation were selected and optimized. Under optimum conditions, the calibration graph was linear in the concentration range of 10.0–600.0 μg L−1 with a detection limit of 0.61 μg L−1. The relative standard deviation for ten replicate measurements of 20.0 and 400.0 μg L−1 of Pb were 3.56 and 3.25%, respectively. Comparative studies showed that graphene is superior to other adsorbents including C18 silica, graphitic carbon, and single- and multi-walled carbon nanotubes for the extraction of Pb. The proposed method was successfully applied in the analysis of environmental water and vegetable samples. Good spiked recoveries over the range of 95.3–100.4% were obtained. This work not only proposes a useful method for sample preconcentration, but also reveals the great potential of graphene as an excellent sorbent material in analytical processes.  相似文献   

20.
In this work, we present a novel chemiluminescence (CL) method based on direct-injection detector (DID) integrated with the multi-pumping flow system (MPFS) to chemiluminescence determination of the total polyphenol index. In this flow system, the sample and the reagents are injected directly into the cone-shaped detection cell placed in front of the photomultiplier window. Such construction of the detection chamber allows for fast measurement of the CL signal in stopped-flow conditions immediately after mixing the reagents. The proposed DID-CL-MPFS method is based on the chemiluminescence of nanocolloidal manganese(IV)-hexametaphosphate-ethanol system. The application of ethanol as a sensitizer, eliminated the use of carcinogenic formaldehyde. Under the optimized experimental conditions, the chemiluminescence intensities are proportional to the concentration of gallic acid in the range from 5 to 350 ng mL−1. The DID-CL-MPFS method offers a number of advantages, including low limit of detection (0.80 ng mL−1), high precision (RSD = 3.3%) and high sample throughput (144 samples h−1) as well as low consumption of reagents, energy and low waste generation. The proposed method has been successfully applied to determine the total polyphenol index (expressed as gallic acid equivalent) in a variety of plant-derived food samples (wine, tea, coffee, fruit and vegetable juices, herbs, spices).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号