首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 653 毫秒
1.
2.
This paper presents the improvement and advantages of investigating magnetically aligned phospholipid bilayers (bicelles) utilizing electron paramagnetic resonance (EPR) spectroscopy at a microwave frequency of 35 GHz (Q-band) and at a high magnetic field strength of 1.25 T when compared to weaker magnetic fields for X-band EPR studies. The nitroxide spin label 3beta-doxyl-5alpha-cholestane (cholestane or CLS) was inserted into the bicelles and utilized to demonstrate the effects of macroscopic bilayer alignment through the measurement of orientational dependent hyperfine splittings. The effects of different lanthanide ions with varying degree of magnetic susceptibility anisotropy were examined. The requirement of minimal amounts of the Tm3+ and Dy3+ lanthanide ions for well-aligned bicelles were examined for Q-band and compared with amounts required for X-band bicelle alignment studies. At a magnetic field of 1.25 T (when compared to 0.63 T at X-band), the perpendicular and parallel orientation were aligned with lower concentrations of Dy3+ and Tm3+, respectively, and thereby eliminating/minimizing the unwanted effects associated with lanthanide-protein interactions. Thus, it is much easier to magnetically align phospholipid bilayers at Q-band when compared to X-band.  相似文献   

3.
In this paper, we report our initial results on studying magnetically aligned phospholipid bilayers (bicelles) at high magnetic fields (approximately 3.4 T) with electron paramagnetic resonance (EPR) spectroscopy at 95 GHz (W-band). In order to characterize this system for W-band EPR studies, we have utilized the nitroxide spin probe 3beta-doxyl-5alpha-cholestane to demonstrate the effects of macroscopic bilayer alignment. At W-band due to the increase in magnetic field strength (when compared to X-band studies at 9.5 GHz) (S. M. Garber et al., J. Am. Chem. Soc. 121, 3240-3241 (1999)), we were able to examine magnetically aligned phospholipid bilayers at two orientations with the bilayer normal oriented either perpendicular or parallel (upon addition of YbCl3) with respect to the direction of the static magnetic field. Additionally, at a magnetic field of 3.4 T (g=2 resonance at W-band), we were able to study the parallel alignment with a lower concentration of Yb3+, thereby eliminating the possible unwanted effects associated with lanthanide-protein interactions and paramagnetic shifts and/or line broadening induced by the lanthanide ions. The development of this new spin label alignment technique will open up a whole new area of investigation for phospholipid bilayer systems and membrane protein EPR studies at high magnetic fields.  相似文献   

4.
Our lab is developing a spin-labeled EPR spectroscopic technique complementary to solid-state NMR studies to study the structure, orientation, and dynamics of uniaxially aligned integral membrane proteins inserted into magnetically aligned discotic phospholipid bilayers, or bicelles. The focus of this study is to optimize and understand the mechanisms involved in the magnetic alignment process of bicelle disks in weak magnetic fields. Developing experimental conditions for optimized magnetic alignment of bicelles in low magnetic fields may prove useful to study the dynamics of membrane proteins and its interactions with lipids, drugs, steroids, signaling events, other proteins, etc. In weak magnetic fields, the magnetic alignment of Tm(3+)-doped bicelle disks was thermodynamically and kinetically very sensitive to experimental conditions. Tm(3+)-doped bicelles were magnetically aligned using the following optimized procedure: the temperature was slowly raised at a rate of 1.9K/min from an initial temperature being between 298 and 307K to a final temperature of 318K in the presence of a static magnetic field of 6300G. The spin probe 3beta-doxyl-5alpha-cholestane (cholestane) was inserted into the bicelle disks and utilized to monitor bicelle alignment by analyzing the anisotropic hyperfine splitting for the corresponding EPR spectra. The phases of the bicelles were determined using solid-state 2H NMR spectroscopy and compared with the corresponding EPR spectra. Macroscopic alignment commenced in the liquid crystalline nematic phase (307K), continued to increase upon slowly raising the temperature, and was well-aligned in the liquid crystalline lamellar smectic phase (318K).  相似文献   

5.
Solid-state NMR experiments on mechanically aligned bilayer and magnetically aligned bicelle samples demonstrate that membrane proteins undergo rapid rotational diffusion about the normal in phospholipid bilayers. Narrow single-line resonances are observed from 15N labeled sites in the trans-membrane helix of the channel-forming domain of the protein Vpu from HIV-1 in phospholipid bilayers with their normals at angles of 0 degrees, 20 degrees, 40 degrees, and 90 degrees, and bicelles with their normals at angles of 0 degrees and 90 degrees with respect to the direction of the applied magnetic field. This could only occur if the entire polypeptide undergoes rotational diffusion about the bilayer normal. Comparisons between experimental and simulated spectra are consistent with a rotational diffusion coefficient (DR) of approximately 10(5)s-1.  相似文献   

6.
Membrane topology changes introduced by the association of biologically pertinent molecules with membranes were analyzed utilizing the (1)H-(13)C heteronuclear dipolar solid-state NMR spectroscopy technique (SAMMY) on magnetically aligned phospholipid bilayers (bicelles). The phospholipids (1)H-(13)C dipolar coupling profiles lipid motions at the headgroup, glycerol backbone, and the acyl chain region. The transmembrane segment of phospholamban, the antimicrobial peptide (KIGAKI)(3) and cholesterol were incorporated into the bicelles, respectively. The lipids (1)H-(13)C dipolar coupling profiles exhibit different shifts in the dipolar coupling contour positions upon the addition of these molecules, demonstrating a variety of interaction mechanisms exist between the biological molecules and the membranes. The membrane topology changes revealed by the SAMMY pulse sequence provide a complete screening method for analyzing how these biologically active molecules interact with the membrane.  相似文献   

7.
This paper presents the first time that both solid-state NMR spectroscopy and EPR spectroscopy are used to study the effects of cholesterol on magnetically aligned phospholipid bilayers (bicelles). Solid-state deuterium NMR spectroscopy was carried out using both chain perdeuterated 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC-d(54)) and a partially deuterated beta-[2,2,3,4,4,6-(2)H(6)]cholesterol (cholesterol-d(6)). Also, EPR spectroscopy was carried out utilizing a 3 beta-doxyl-5 alpha-cholestane (cholestane) spin probe incorporated into magnetically aligned bilayers to provide a more complete picture about the ordering and dynamics of the phospholipid and cholesterol molecules in the bicelle membrane system. The results demonstrate that cholesterol was successfully incorporated into the phospholipid bilayers. The molecular order parameters extracted directly from the (2)H NMR spectra of both DMPC-d(54) and cholesterol-d(6) were compared to that from the EPR study of cholestane. The order parameters indicate that the sterol was motionally restricted, and that the DMPC had high order and low motion for the hydrocarbon segments close to the head groups of the phospholipids and less order and more rapid motion toward the terminal methyl groups. Both methods clearly indicate an overall increase in the degree of ordering of the molecules in the presence of cholesterol and a decrease in the degree of ordering at higher temperatures. However, EPR spectroscopy and (2)H NMR spectroscopy exhibit different degrees of sensitivity in detecting the phospholipid molecular motions in the membrane. Finally, cholesterol increases the minimum alignment temperature necessary to magnetically align the phospholipid bilayers.  相似文献   

8.
Bicelles composed of the long-chain biphenyl phospholipid TBBPC (1-tetradecanoyl-2-(4-(4-biphenyl)butanoyl)-sn-glycero-3-PC) and the short-chain phospholipid DHPC align with their bilayer normals parallel to the direction of the magnetic field. In contrast, in typical bicelles the long-chain phospholipid is DMPC or DPPC, and the bilayers align with their normals perpendicular to the field. Samples of the membrane-bound form of the major coat protein of Pf1 bacteriophage in TBBPC bicelles are stable for several months, align magnetically over a wide range of temperatures, and yield well-resolved solid-state NMR spectra similar to those obtained from samples aligned mechanically on glass plates or in DMPC bicelle samples "flipped" with lanthanide ions so that their bilayer normals are parallel to the field. The order parameter of the TBBPC bicelle sample decreases from approximately 0.9 to 0.8 upon increasing the temperature from 20 degrees C to 60 degrees C. Since the frequency spans of the chemical shift and dipolar coupling interactions are twice as large as those obtained from proteins in DMPC bicelles without lanthanide ions, TBBPC bicelles provide an opportunity for structural studies with higher spectral resolution of the metal-binding membrane proteins without the risk of chemical or spectroscopic interference from the added lanthanide ions. In addition, the large temperature range of these samples is advantageous for the studies of membrane proteins that are unstable at elevated temperatures and for experiments requiring measurements as a function of temperature.  相似文献   

9.
傅日强 《波谱学杂志》2009,26(4):437-456
有序样品的固体核磁共振(NMR)已快速发展成测定蛋白质和多肽在“仿真”水化磷脂层中高分辨结构的重要谱学方法. 由于与膜相连的蛋白质和多肽的结构、动力学和功能往往都和其周边自然环境密切相关,因此人们把蛋白质和多肽有序排列于水化磷脂层中进行固体NMR测量, 从而获得与取向相关的各向异性自旋相互作用. 这些取向约束可作为结构参数重构蛋白质在水化磷脂层中的高分辨三维结构. 近十年来在样品制备,NMR探头和实验方法方面的显著发展,极大地促进了有序样品的固体NMR的发展,并使之成为测定与膜相连的蛋白质和多肽结构的有效方法. 该综述介绍有序样品的固体NMR谱学方法,并总结此领域里的最新研究进展.  相似文献   

10.
We report NMR data for magnetically oriented phospholipid bilayers which have been doped with a lipid derivatized with a polyethylene glycol polymer headgroup to stabilize samples against aggregation. (13)C, (31)P, and (2)H NMR data indicate that the incorporation of PEG2000-PE (1% molar to DMPC) does not interfere with the orientation properties of bicelles prepared at 25% w/v with or without the presence of lanthanide. Bicelles prepared at 10% w/v are also shown to orient when PEG2000-PE is added. The addition of PEG2000-PE to cholesterol-containing, lanthanide-flipped bicelles is shown to inhibit sample phase separation and improve spectral quality. Furthermore, the addition of PEG2000-PE to high w/v bicelles (40% w/v) is demonstrated to lead to an increase in overall sample order.  相似文献   

11.
Magnetically aligned bicelles are becoming attractive model membranes to investigate the structure, dynamics, geometry, and interaction of membrane-associated peptides and proteins using solution- and solid-state NMR experiments. Recent studies have shown that bicelles are more suitable than mechanically aligned bilayers for multidimensional solid-state NMR experiments. In this work, we describe experimental aspects of the natural abundance (13)C and (14)N NMR spectroscopy of DMPC/DHPC bicelles. In particular, approaches to enhance the sensitivity and resolution and to quantify radio-frequency heating effects are presented. Sensitivity of (13)C detection using single pulse excitation, conventional cross-polarization (CP), ramp-CP, and NOE techniques are compared. Our results suggest that the proton decoupling efficiency of the FLOPSY pulse sequence is better than that of continuous wave decoupling, TPPM, SPINAL, and WALTZ sequences. A simple method of monitoring the water proton chemical shift is demonstrated for the measurement of sample temperature and calibration of the radio-frequency-induced heating in the sample. The possibility of using (14)N experiments on bicelles is also discussed.  相似文献   

12.
A method for assigning solid-state NMR spectra of membrane proteins aligned in phospholipid bicelles that makes use of isotropic chemical shift frequencies and assignments is demonstrated. The resonance assignments are based on comparisons of 15N chemical shift differences in spectra obtained from samples with their bilayer normals aligned perpendicular and parallel to the direction of the applied magnetic field.  相似文献   

13.
'q-Titration' refers to the systematic comparison of signal intensities in solution NMR spectra of uniformly (15)N labeled membrane proteins solubilized in micelles and isotropic bicelles as a function of the molar ratios (q) of the long-chain lipids (typically DMPC) to short-chain lipids (typically DHPC). In general, as q increases, the protein resonances broaden and correspondingly have reduced intensities due to the overall slowing of protein reorientation. Since the protein backbone signals do not broaden uniformly, the differences in line widths (and intensities) enable the narrower (more intense) signals associated with mobile residues to be differentiated from the broader (less intense) signals associated with "structured" residues. For membrane proteins with between one and seven trans-membrane helices in isotropic bicelles, we have been able to find a value of q between 0.1 and 1.0 where only signals from mobile residues are observed in the spectra. The signals from the structured residues are broadened so much that they cannot be observed under standard solution NMR conditions. This q value corresponds to the ratio of DMPC:DHPC where the signals from the structured residues are "titrated out" of the spectrum. This q value is unique for each protein. In magnetically aligned bilayers (q>2.5) no signals are observed in solution NMR spectra of membrane proteins because the polypeptides are "immobilized" by their interactions with the phospholipid bilayers on the relevant NMR timescale (~10(5)Hz). No signals are observed from proteins in liposomes (only long-chain lipids) either. We show that it is feasible to obtain complementary solution NMR and solid-state NMR spectra of the same membrane protein, where signals from the mobile residues are present in the solution NMR spectra, and signals from the structured residues are present in the solid-state NMR spectra. With assigned backbone amide resonances, these data are sufficient to describe major features of the secondary structure and basic topology of the protein. Even in the absence of assignments, this information can be used to help establish optimal experimental conditions.  相似文献   

14.
We have shown that bicelles prepared from dilauryl phosphatidylcholine (DLPC) and dipalmitoyl phosphatidylcholine (DPPC) align in a magnetic field under conditions similar to the more common dimyristoyl phosphatidylcholine (DMPC) bicelles. In addition, a model transmembrane peptide, P16, with a hydrophobic stretch of 24 A, and specific alanine-d(3) labels, was incorporated into all of the different bicelles. The long-chain phospholipid (DLPC, DMPC, or DPPC) remained unperturbed upon incorporation of the peptide while the quadrupolar splitting of the short-chain phospholipid along the bicelle rim increased by varying degrees in the different bicelle systems. The change in quadrupolar splitting of the short-chain phospholipids was attributed to changes in either fluidity of the planar region of the bicelle or differences in overall lipid packing. When the hydrophobic stretch of the bilayer was 22.8 (DMPC) or 26.3 A (DPPC), the peptide tilt was found to be transmembrane (33-35 degrees with respect to the bicelle normal). When the hydrophobic stretch of the bilayer was 19.5 A (DLPC), the peptide quadrupolar splittings suggested a loss of transmembrane orientation. When tryptophan was incorporated in the middle of the transmembrane region, the transmembrane orientation was also lost.  相似文献   

15.
Structure and dynamics of membrane proteins can be effectively studied by oriented-sample solid-state nuclear magnetic resonance (NMR) techniques when the lipid bilayers are macroscopically aligned with respect to the main magnetic field. Magnetic alignment of the protein-containing membrane bilayer results from the negative susceptibility anisotropy of the lipid hydrocarbon interior yielding perpendicular sample alignment. At this orientation, while the uniformity of alignment represents an essential prerequisite for obtaining high-quality NMR spectra, further line narrowing is obtained by uniaxial motional averaging of the azimuthal parts of the chemical shift anisotropies and dipolar couplings. The motional averaging is brought about by uniaxial rotational diffusion of the protein molecules about the normal to the membrane surface, which is perpendicular to the magnetic field. Uniaxial averaging is efficient when the motion about the axis of alignment becomes sufficiently fast (on the timescale of the dipolar couplings and chemical shift anisotropies). Line narrowing under uniaxial rotation can be theoretically modeled using the stochastic Liouville equation. In this mini-review, we illustrate the method of uniaxial averaging for the relatively small Pf1 coat protein which exhibits excellent resolution in magnetically aligned bicelles due to its fast uniaxial diffusion and even superior resolution in large (30 nm) nanodiscs (macrodiscs) stabilized by a belt peptide. Spectra of Pf1 coat protein in polymer-stabilized macrodiscs, an alternative and more robust alignment media, are presented. We also report on preliminary spectra of a much larger protein—uniformly 15N labeled M1-M4 domain for the human acetylcholine receptor. While some spectral resolution is apparent, significantly broader linewidths emphasize the need for creating fast rotating discoidal membrane mimetics.  相似文献   

16.
The design, construction, and performance of a cross-coil double-resonance probe for solid-state NMR experiments on lossy biological samples at high magnetic fields are described. The outer coil is a Modified Alderman–Grant Coil (MAGC) tuned to the 1H frequency. The inner coil consists of a multi-turn solenoid coil that produces a B1 field orthogonal to that of the outer coil. This results in a compact nested cross-coil pair with the inner solenoid coil tuned to the low frequency detection channel. This design has several advantages over multiple-tuned solenoid coil probes, since RF heating from the 1H channel is substantially reduced, it can be tuned for samples with a wide range of dielectric constants, and the simplified circuit design and high inductance inner coil provides excellent sensitivity. The utility of this probe is demonstrated on two electrically lossy samples of membrane proteins in phospholipid bilayers (bicelles) that are particularly difficult for conventional NMR probes. The 72-residue polypeptide embedding the transmembrane helices 3 and 4 of the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) (residues 194–241) requires a high salt concentration in order to be successfully reconstituted in phospholipid bicelles. A second application is to paramagnetic relaxation enhancement applied to the membrane-bound form of Pf1 coat protein in phospholipid bicelles where the resistance to sample heating enables high duty cycle solid-state NMR experiments to be performed.  相似文献   

17.
We present a temperature dependent x-ray reflectivity study of highly oriented, fully hydrated multilamellar phospholipid membranes. Both the specular and diffuse (nonspecular) x-ray reflectivity were measured for dimyristoyl-sn-glycero-phosphocholine (DMPC) and oleoyl-palmitoyl-sn-glycero-phosphocholine (POPC) on silicon substrates in excess water. In this configuration the repeat distance as well as the fluctuation spectra can be determined as a function of temperature. Both model systems studied exhibit a discontinuous unbinding transition from a substrate bound, multilamellar state to a state of freely dispersed bilayers in water. In the unbound phase a single membrane remains on the substrate.  相似文献   

18.
Ion bombardment induced magnetic patterning (IBMP) was used to write in-plane magnetized micro and submicron patterns in exchange biased magnetic bilayers, where the magnetization directions of the adjacent patterns are antiparallel to each other in remanence. These magnetic patterns were investigated by non-contact magnetic force microscopy (MFM). It is shown that the recorded MFM images of the IBMP patterns in two exemplarily chosen standard layer systems (NiFe (4.8 nm)/NiO (68 nm) and Co (4.8 nm)/NiO (68 nm)) can be well described by a model within the point-dipole approximation for the tip magnetization. For 5 and 0.9 μm wide bar patterns the domain wall widths between adjacent magnetically patterned areas were determined to a≈1 μm. The minimum magnetically stable pattern width was estimated to be 0.7 μm in the standard system Co (4.8 nm)/NiO (68 nm).  相似文献   

19.
Electron spin echo (ESE) spectroscopy, a pulsed version of electron paramagnetic resonance (EPR), was applied to spin-labeled stearic acids in phospholipid bilayers hydrated in the presence of sucrose and sorbitol, which are known for their cryoprotective action on biological membranes. The phospholipids were 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC). Stearic acids were labeled by nitroxide 4,4-dimethyl-oxazolidine-1-oxyl (DOXYL) attached rigidly at either the 5th or 16th specific carbon positions. ESE detects fast stochastic small-angle restricted molecular rotations (stochastic molecular librations) with correlation times on the nanosecond timescale. These motions are believed to have the same nature as the anharmonic motions of hydrogen atoms in biological substances detected by neutron scattering and Mössbauer spectroscopy, which become active above 200 K. To ensure that the echo decays indeed originate from fast stochastic molecular librations, a three-pulse stimulated spin echo was employed. It was found that the presence of sucrose or sorbitol suppresses the observed molecular motions. The observed effect was nearly the same for both label positions, indicating that the motions are similarly suppressed near the bilayer surface and in the bilayer interior. This finding suggests non-specific interactions of sugars with bilayer surface, which are likely to influence only the bulk physical properties of hydrated membranes. The results obtained show the usefulness of spin-echo EPR of spin labels when applied to investigate the molecular mechanisms of action of cryoprotective agents on biological systems.  相似文献   

20.
Continuous wave irradiation has limited bandwidth for heteronuclear 1H decoupling at high fields and for 13C decoupling in 1H/13C/15N triple-resonance experiments. SPINAL-16 modulation is shown to improve the efficiency of 1H and 13C heteronuclear decoupling on single crystals of peptides and on magnetically aligned samples of membrane proteins in bicelles, which is of particular importance because aqueous samples of biomolecules are lossy at high fields, which limits the strengths of the RF fields that can be applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号