首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Patients with spinal cord injury(SCI) are suffering disability and accompanying complications. Due to the complex biological processes and inhibitory microenvironment after SCI, advances in clinical treatment show obvious limitations for achieving a successful repair. Herein, we summarize recent advances in engineering strategies of using electrospun nanofibers to promote the neural regeneration and functional recovery after SCI. We firstly introduce the pathological mechanism of SCI and thus point out the challenges on the regeneration of the nerve. We then discuss the regenerative approaches by combining electrospun nanofibrous scaffolds with physical cues, biochemical cues(e.g., cells, growth factors and other biomolecules), external stimuli, and supporting materials filling in the inner lumen of the scaffolds. All these strategies have indicated their potentials to enhance the efficacy of repairing the SCI. At last, we provide a perspective on the future direction for designing the electrospun nanofibrous scaffolds in combination with imaging systems to realize the in-situ monitoring of regeneration progress for further improving the treatment outcome.  相似文献   

2.
Stem cell transplantations for spinal cord injury (SCI) have been studied extensively for the past decade in order to replace the damaged tissue with human pluripotent stem cell (hPSC)‐derived neural cells. Transplanted cells may, however, benefit from supporting and guiding structures or scaffolds in order to remain viable and integrate into the host tissue. Biomaterials can be used as supporting scaffolds, as they mimic the characteristics of the natural cellular environment. In this study, hPSC‐derived neurons, astrocytes, and oligodendrocyte precursor cells (OPCs) are cultured on aligned poly(ε‐caprolactone) nanofiber platforms, which guide cell orientation to resemble that of spinal cord in vivo. All cell types are shown to efficiently spread over the nanofiber platform and orient according to the fiber alignment. Human neurons and astrocytes require extracellular matrix molecule coating for the nanofibers, but OPCs grow on nanofibers without additional treatment. Furthermore, the nanofiber platform is combined with a 3D hydrogel scaffold with controlled thickness, and nanofiber‐mediated orientation of hPSC‐derived neurons is also demonstrated in a 3D environment. In this work, clinically relevant materials and substrates for nanofibers, fiber coatings, and hydrogel scaffolds are used and combined with cells suitable for developing functional cell grafts for SCI repair.

  相似文献   


3.
《先进技术聚合物》2018,29(7):2050-2063
Electrospinning has been extensively used to construct tissue‐engineered scaffolds because of its ability to provide the fibrous scaffold with structurally analogous to the naturally occurring protein in the extracellular matrix of native tissues. In addition, the modification of scaffolds with bioactive molecules is beneficial as this can create an environment that consists of biochemical cues to further promote cell adhesion, proliferation, and differentiation. In the present contribution, we prepared and investigated the potential used of aligned electrospun poly(3‐hydroxybutyrate) (PHB) scaffold immobilized with bioactive molecule to serve as nervous scaffold. Laminin was successfully immobilized on the surface using covalent binding between functional groups of modified scaffolds and protein. The ability to use for neural regeneration was evaluated in vitro towards murine neuroblastoma Neuro2a cell line and mouse brain‐derived neural stem cells. The surface modification with laminin immobilized on the PHB fibrous scaffolds supported the attachment and promoted the proliferation of Neuro2a very wells. Despite the good attachment and proliferation of Neuro2a and mouse brain‐derived neural stem cells were not able to proliferate on the neat PHB, hydrolyzed PHB and laminin immobilized on hydrolyzed PHB fibrous scaffold.  相似文献   

4.
Despite the great advances in microsurgery, some neural injuries cannot be treated surgically. Stem cell therapy is a potential approach for treating neuroinjuries and neurodegenerative disease. Researchers have developed various bioactive scaffolds for tissue engineering, exhibiting enhanced cell viability, attachment, migration, neurite elongation, and neuronal differentiation, with the aim of developing functional tissue grafts that can be incorporated in vivo. Facilitating the appropriate interactions between the cells and extracellular matrix is crucial in scaffold design. Modification of scaffolds with biofunctional motifs such as growth factors, drugs, or peptides can improve this interaction. In this review, we focus on the laminin‐derived Ile‐Lys‐Val‐Ala‐Val peptide as a biofunctional epitope for neuronal tissue engineering. Inclusion of this bioactive peptide within a scaffold is known to enhance cell adhesion as well as neuronal differentiation in both 2‐dimensional and 3‐dimensional environments. The in vivo application of this peptide is also briefly described.  相似文献   

5.
Self-assembling peptide amphiphile molecules have been of interest to various tissue engineering studies. These molecules self-assemble into nanofibers which organize into three-dimensional networks to form hydrocolloid systems mimicking the extracellular matrix. The formation of nanofibers is affected by the electrostatic interactions among the peptides. In this work, we studied the effect of charged groups on the peptides on nanofiber formation. The self-assembly process was studied by pH and zeta potential measurements, FT-IR, circular dichroism, rheology, atomic force microscopy, scanning electron microscopy and transmission electron microscopy. The aggregation of the peptides was triggered upon neutralization of the charged residues by pH change or addition of electrolyte or biomacromolecules. Understanding the controlled formation of the hydrocolloid gels composed of peptide amphiphile nanofibers can lead us to develop in situ gel forming bioactive collagen mimetic nanofibers for various tissue engineering studies including bioactive surface coatings.  相似文献   

6.
Self-assembling peptide nanofiber scaffolds are an excellent material for applications such as tissue repair, tissue regeneration, instant stopping of bleeding, and slow drug release. We report a new self-assembling peptide D-EAK16 consisting purely of D-amino acids. D-EAK16 and L-EAK16 display mirror-image CD spectra at 20 degrees C. Like L-EAK16, D-EAK16 self-assembles into nanofibers, thus demonstrating that chiral self-assembling peptide nanofiber scaffolds can be made from both L- and D-amino acids. We also show that D-peptide nanofibers are resistant to natural proteases and may thus be useful in biotechnology, nanobiotechnology, tissue repair and tissue regeneration as well as other medical applications.  相似文献   

7.
8.
Electrospun nanofibers are of the same length scale as the native extracellular matrix and have been extensively reported to facilitate adhesion and proliferation of cells and to promote tissue repair and regeneration. With a primary focus on tissue repair and regeneration using electrospun scaffolds, only a few studies involved electrospun nanofiber scaffolds directing cell behaviors have been reported. In this study, we prepared electrospun nanofiber scaffolds with distinct fiber configurations, namely, random and aligned orientations of nanofibers, as well as oriented yarns, and investigated their effects on cell behaviors. Our results showed that these scaffolds supported good proliferation and viability of murine fibroblasts. Fiber configuration profoundly influenced cell morpho-logy and orientation but showed no effects on cell proliferation rate. The yarn scaffold had comparable total protein accumulation with the random and aligned scaffolds, but it supported a greater pro-liferation rate of fibroblasts with significantly elevated collagen de-position due to its porous fibrous configuration. Cell-seeded yarn scaffolds showed a greater Young's modulus compared with cell-free controls as early as 1 week. Together with its unique fiber configuration similar to the native extracellular matrix of the myocardium, the yarn scaffold might be a suitable matrix material for modeling cardiac fibrotic disorders.  相似文献   

9.
The ability to supply suitable blood vessel system is a major challenge for artificial thick tissue engineering. Angiogenesis is a key point during the process of microvascular formation. Many bioactive molecules such as extra cellular matrix(ECM) proteins and adhesion peptides derived from the ECM are applied to promote angiogenesis. In this work, two adhesion peptides, YIGSR and REDV, were selected to modify sodium alginate(ALG) to obtain YIGSR- and REDV-alginate conjugates(ALG-YIGSR, and ALG-REDV, respectively). We mixed the two peptide-conjugates together in a series of concentration ratios to prepare bioactive surfaces for in vitro studies and hydrogel scaffolds for in vivo studies. In vitro studies showed that surfaces modified with 1.09 pmol/mm2 peptide had the best affinity to human umbilical vein endothelial cells(HUVECs) than that with high or low concentrations of peptides. In addition, surfaces modified with dual peptides could significantly promote HUVECs proliferation, where ALG-YIGSR:ALG-REDV at a mole ratio of 5:1 exhibited the best enhancement ability. Furthermore, the in vivo angiogenesis results demonstrated that hydrogel scaffolds composed of mixed ALG-YIGSR and ALG-REDV at the 5:1 ratio had angiogenic induction potential by stimulating new blood vessel formation, and showed higher blood vessel density than scaffolds composed of a single peptide. These results demonstrated that a mixed combination of peptide alginate conjugates could be a potential scaffold to stimulate and induce angiogenesis in tissue engineering applications.  相似文献   

10.
Severe peripheral nervous system injuries currently hold limited therapeutic solutions. Existing clinical techniques such as autografts, allografts, and newer nerve guidance conduits have shown variable outcomes in functional recovery, adverse immune responses, and in some cases low or minimal availability. This can be attributed in part to the lack of chemical, physical, and electrical cues directing both nerve guidance and regeneration. To address this pressing clinical issue, electrospun nanofibers and microfibers composed of piezoelectric polyvinylidene flouride‐triflouroethylene (PVDF‐TrFE) have been introduced as an alternative template for tissue engineered biomaterials, specifically as it pertains to their relevance in soft tissue and nerve repair. Here, biocompatible scaffolds of PVDF‐TrFE are fabricated and their ability to generate an electrical response to mechanical deformations and produce a suitable regenerative microenvironment is examined. It is determined that 20% (w/v) PVDF‐TrFE in (6:4) dimethyl formamide (DMF):acetone solvent maintains a desirable piezoelectric coefficient and the proper physical and electrical characteristics for tissue regeneration. Further, it is concluded that scaffolds of varying thickness promoted the adhesion and alignment of Schwann cells and fibroblasts. This work offers a prelude to further advancements in nanofibrous technology and a promising outlook for alternative, autologous remedies to peripheral nerve damage.  相似文献   

11.
Use of growth factors as biochemical molecules to elicit cellular differentiation is a common strategy in tissue engineering. However, limitations associated with growth factors, such as short half‐life, high effective physiological doses, and high costs, have prompted the search for growth factor alternatives, such as growth factor mimics and other proteins. This work explores the use of insulin protein as a biochemical factor to aid in tendon healing and differentiation of cells on a biomimetic electrospun micro‐nanostructured scaffold. Dose response studies were conducted using human mesenchymal stem cells (MSCs) in basal media supplemented with varied insulin concentrations. A dose of 100‐ng/mL insulin showed increased expression of tendon markers. Synthetic‐natural blends of various ratios of polycaprolactone (PCL) and cellulose acetate (CA) were used to fabricate micro‐nanofibers to balance physicochemical properties of the scaffolds in terms of mechanical strength, hydrophilicity, and insulin delivery. A 75:25 ratio of PCL:CA was found to be optimal in promoting cellular attachment and insulin immobilization. Insulin immobilized fiber matrices also showed increased expression of tendon phenotypic markers by MSCs similar to findings with insulin supplemented media, indicating preservation of insulin bioactivity. Insulin functionalized scaffolds may have potential applications in tendon healing and regeneration.  相似文献   

12.
Fibronectin and proteoglycans as determinants of cell-substratum adhesion.   总被引:17,自引:0,他引:17  
When normal or SV40-transformed Balb/c 3T3 cells are treated with the Ca++-specific chelator EGTA, they round up and pull away from their footpad adhesion sites to the serum-coated tissue culture substrate, as shown by scanning electron microscope studies. Elastic membranous retraction fibers break upon culture agitation, leaving adhesion sites as substrate-attached material (SAM) (Cells leave "footprints" of substrate adhesion sites during movement by a very similar process.) SAM contains 1-2% of the cell's total protein and phospholipid content and 5-10% of its glucosamine-radiolabeled polysaccharide, most of which is glycosaminoglycan (GAG). By one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, there is considerable enrichment in SAM for specific GAGs; for the glycoprotein fibronectin; and for the cytoskeletal proteins actin, myosin, and the subunit protein of the 10 nm-diameter filaments. Fibrillar fibronectin of cellular origin and substratum-bound fibronectin of serum origin (cold-insoluble globulin, CIg) have been visualized by immunofluorescence microscopy. The GAG composition in SAM has been examined under different cellular growth and attachment conditions. Heparan sulfate content correlates with glycopeptide content (derived from glycoprotein). Newly attaching cells deposit SAM with principally heparan sulfate and fibronectin and little of the other GAGs. Hyaluronate and chrondroitin proteoglycans are coordinately deposited in SAM as cells begin spreading and movement over the substrate. Cells attaching to serum-coated or CIg-coated substrates deposited SAM with identical compositions. The proteoglycan nature of the GAGs in SAM has been examined, as well as the ability of proteoglycans to form two classes of reversibly dissociable "supramolecular complexes" - one class with heparan sulfate and glycopeptide-containing material and the second with hyaluronate-chondroitin complexes. Enzymatic digestion of "intact" SAM with trypsin or testicular hyaluronidase indicates that (1) only a small portion of long-term radiolabeled fibronectin and cyto-skeletal protein is bound to the substrate via hyaluronate or chondroitin classes of GAG; (2) most of the fibronectin, cytoskeletal protein and heparan sulfate coordinately resist solubilization; and (3) newly synthesized fibronectin, which is metabolically labile in SAM, is linked to SAM by hyaluronate- and/or chondroitin-dependent binding. All of our studies indicate that heparan sulfate is a direct mediator of adhesion of cells to the substrate, possibly by binding to both cell-surface fibronectin and substrate-bound CIg in the serum coating; hyaluronate-chondroitin complexes in SAM appear to be most important in motility of cells by binding and labilizing fibronectin at the periphery of footpad adhesions, with subsequent cytoskeletal disorganization.  相似文献   

13.
Lee HJ  Kim HS  Kim HO  Koh WG 《Lab on a chip》2011,11(17):2849-2857
This paper describes the development of multi-functional nanofiber scaffolds consisting of multiple layers of nanofiber scaffolds and nanofiber-incorporated poly(ethylene glycol) (PEG) hydrogels. As a proof-of-concept demonstration, we fabricated micropatterned polymeric nanofiber scaffolds that were capable of simultaneously generating cellular micropatterns within a biomimetic environment and detecting cellular metabolic products within well-defined microdomains. To achieve this goal, we designed nanofiber scaffolds with both vertical and lateral microdomains. Vertically heterogeneous structures that were responsible for multi-functionality were realized by preparing double-layered nanofiber scaffolds consisting of an antibody-immobilized bottom layer of nanofibers and an upper layer of bare polystyrene (PS) nanofibers by a two-step sequential electrospinning process. Photopatterning of poly(ethylene glycol) (PEG) hydrogel on the electrospun nanofibers produced laterally heterogeneous micropatterned nanofiber scaffolds made of hydrogel microwells filled with a nanofibrous region, which is capable of generating cell and protein micropatterns due to the different interactions that cells and proteins have with PEG hydrogels and nanofibers. When HepG2 cells were seeded into resultant nanofiber scaffolds, cells selectively adhered within the 200 μm × 200 μm PS fiber microdomain and formed 180.2 ± 6.7 μm spheroids after 5 days of culture in the upper layer. Furthermore, immobilized anti-albumin in the bottom layer detected albumin secreted by micropatterned HepG2 cells with higher sensitivity than flat PS substrates, demonstrating successful accomplishment of dual functions using micropatterned double-layered nanofiber scaffolds.  相似文献   

14.
The annulus fibrosus comprises concentric lamellae that can be damaged due to intervertebral disc degeneration; to provide permanent repair of these acquired structural defects, one solution is to fabricate scaffolds that are designed to support the growth of annulus fibrosus cells. In this study, electrospun nanofibrous scaffolds of polycaprolactone are fabricated in random, aligned, and round-end configurations. Primary porcine annulus fibrosus cells are grown on the scaffolds and evaluated for attachment, proliferation, and production of extracellular matrix. The scaffold consisting of round-end nanofibers substantially outperforms the random and aligned scaffolds on cell adhesion; additionally, the scaffold with aligned nanofibers strongly affects the orientation of cells.  相似文献   

15.
There is increasing interest in the synthesis of low molecular weight heparin and heparan sulfate mimetic polymers because of their various potential biomedical applications. The functional activity of heparin and heparan sulfate is believed to arise from the presence of a number of functional groups, such as hydroxyl, carboxylate and sulfate groups. The design and synthesis of novel heparin‐mimetic polymers with a particular functionality poses a formidable challenge and requires carefully control of the selective conversion of functional groups on the polymer chain. Here, this study describes a simple and efficient synthetic protocol for the preparation of heparin‐mimetic linear polyglycidol copolymers based on the selective conversion of primary hydroxyl groups to carboxylic acids under ruthenium‐catalyzed selective dehydrogenation in basic aqueous solution. To achieve the anticoagulant activity of these polymers, primary hydroxyl groups are selectively converted to sulfate groups. The anticoagulant activity of the heparin mimics is studied by rotational thromboelastometry using EXTEM and INTEM assays. The environmentally benign process described herein provides an attractive route for the synthesis of heparin‐mimetic polymers with tailored functions such as anticoagulant activity.

  相似文献   


16.
In recent years, a variety of biomimetic constructs have emerged which mimic the bioactive sequences found in the natural extracellular matrix (ECM) proteins such as fibronectin (FN) that promote cell adhesion as well as proliferation on artificially functionalized interfaces. Much interest lies in investigating the ability of the ECM mimetic materials in regulating a number of vital cell functions including differentiation, gene expression, migration, and proliferation. A peptide amphiphile PR_b containing both the cell adhesive GRGDSP and synergistic PHSRN peptide sequences was developed in our group that was shown to support enhanced cell proliferation and ECM FN secretion as compared to GRGDSP and FN functionalized interfaces. In this study, we have investigated the binding affinity of the PR_b peptide ligand with the FN cell surface receptor, the α(5)β(1) integrin. We compared PR_b functionalized surfaces with FN and BSA coated surfaces and GRGDSP functionalized surfaces in terms of promoting intracellular signaling cascades that are essential for enhanced cellular activity. Specifically, we studied the phosphorylation of focal adhesion kinase (FAK) at tyrosine residues Y397 and Y576 and the formation of cyclin D1, both of which are intracellular markers of integrin mediated attachment of cells, signaling pathways, and progression of cell cycle. FAK and cyclin D1 encourage enhanced cell proliferation, differentiation, and gene expression. Our results show that the PR_b peptide ligand has a specific and strong binding affinity for the α(5)β(1) integrin with a dissociation constant of 76.3 ± 6.3 nM. The PR_b peptide ligands supported enhanced FAK phosphorylation activity and increased cyclin D1 formation as compared to the widely used GRGDSP ligand, the native protein FN (positive control), and BSA nonadhesive surfaces (negative control). These results encourage the use of the FN mimetic PR_b peptide in functionalizing biomaterials for potential tissue engineering and therapeutic applications.  相似文献   

17.
魏雨  纪璎  肖琳琳  计剑 《高分子学报》2010,(12):1474-1478
利用AIBN引发自由基反应,由单体2-(甲基丙烯酰氧基)乙基-2-(三甲基氨基)乙基磷酸酯(MPC)、甲基丙烯酸十八酯(SMA)、对硝基苯氧羰基聚乙二醇甲基丙烯酸酯(MEONP)合成了一种新型类细胞膜仿生涂层材料.MPC可以阻抗非特异性吸附;MEONP可以结合抗体或多肽促进特异性识别.通过表面固定的方法引入多肽序列Arg-Glu-Asp-Val(REDV),使涂层具有内皮细胞选择性.核磁、紫外吸收、红外光谱表征证实聚合物的组成以及REDV多肽在表面的固定;并通过血浆复钙化实验表征涂层的血液相容性.细胞黏附与增殖实验反映REDV多肽构建的涂层表面具备良好的特异性识别并结合内皮细胞的能力.  相似文献   

18.
Current therapeutic interventions in bone defects are mainly focused on finding the best bioactive materials for inducing bone regeneration via activating the related intracellular signaling pathways. Integrins are trans‐membrane receptors that facilitate cell‐extracellular matrix (ECM) interactions and activate signal transduction. To develop a suitable platform for supporting human bone marrow mesenchymal stem cells (hBM‐MSCs) differentiation into bone tissue, electrospun poly L‐lactide (PLLA) nanofiber scaffolds were coated with nano‐hydroxyapatite (PLLA/nHa group), gelatin nanoparticles (PLLA/Gel group), and nHa/Gel nanoparticles (PLLA/nHa/Gel group) and their impacts on cell proliferation, expression of osteoblastic biomarkers, and bone differentiation were examined and compared. MTT data showed that proliferation of hBM‐MSCs on PLLA/nHa/Gel scaffolds was significantly higher than other groups (P < .05). Alkaline phosphatase activity was also more increased in hBM‐MSCs cultured under osteogenic media on PLLA/nHa/Gel scaffolds compared to others. Gene expression evaluation confirmed up‐regulation of integrin α2β1 as well as the osteogenic genes BGLAP, COL1A1, and RUNX2. Following use of integrin α2β1 blocker antibody, the protein level of integrin α2β1 in cells seeded on PLLA/nHa/Gel scaffolds was decreased compared to control, which confirmed that most of the integrin receptors were bound to gelatin molecules on scaffolds and could activate the integrin α2β1/ERK axis. Collectively, PLLA/nHa/Gel scaffold is a suitable platform for hBM‐MSCs adhesion, proliferation, and osteogenic differentiation in less time via activating integrin α2β1/ERK axis, and thus it might be applicable in bone tissue engineering.  相似文献   

19.
Dentin phosphoprotein (DPP) is a major component of the dentin matrix playing crucial role in hydroxyapatite deposition during bone mineralization, making it a prime candidate for the design of novel materials for bone and tooth regeneration. The bioactivity of DPP‐derived proteins is controlled by the phosphorylation and dephosphorylation of the serine residues. Here an enzyme‐responsive peptide nanofiber system inducing biomineralization is demonstrated. It closely emulates the structural and functional properties of DPP and facilitates apatite‐like mineral deposition. The DPP‐mimetic peptide molecules self‐assemble through dephosphorylation by alkaline phosphatase (ALP), an enzyme participating in tooth and bone matrix mineralization. Nanofiber network formation is also induced through addition of calcium ions. The gelation process following nanofiber formation produces a mineralized extracellular matrix like material, where scaffold properties and phosphate groups promote mineralization. It is demonstrated that the DPP‐mimetic peptide nanofiber networks can be used for apatite‐like mineral deposition for bone regeneration.  相似文献   

20.
《Electrophoresis》2017,38(24):3161-3167
We developed the photocrosslinkable hydrogel microwell arrays for uniform‐sized neurosphere‐mediated motoneuron differentiation. Neural stem cells (NSCs) were obtained from embryonic cerebral cortex and spinal cord. To generate uniform‐sized neurospheres in a homogeneous manner, the dissociated cells were cultured in the hydrogel microwell arrays for 3 days. Uniform‐sized neurospheres harvested from microwell arrays were replated into laminin‐coated substrate. In parallel, uniform‐sized neurospheres cultured in microwell arrays were encapsulated by photocrosslinkable gelatin methacrylate hydrogels in a three‐dimensional manner. We demonstrated the effect of hydrogel microwell sizes (e.g., 50, 100, 150 μm in diameter) on motoneuron differentiation, showing that the largest uniform‐sized neurospheres derived from embryonic spinal cord efficiently differentiated into motoneurons. Therefore, this hydrogel microwell array could be a powerful array to regulate the uniform‐sized neurosphere‐mediated motoneuron differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号