首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The damage morphology of GaAs1 0 0 single crystal following femtosecond laser (wavelength 806 nm, pulse duration 110 fs, prf 10 Hz) excitation was studied as a function of laser fluence and number of pulses. The threshold value for damage to occur in a GaAs surface in the present experiment was 1.3×1014 W/cm2 for a single pulse. The cooling rate for threshold fluence was calculated as 2.22×1014 °C/s. The damage occurred in the form of surface removal. Ripples and grains were formed in the removed surface. At higher fluences micron depth pits were also formed. The damage morphology was explained with the help of Boson-condensation hypothesis.  相似文献   

2.
An in-depth study of the single pulse and multiple pulse laser (35 ps, 10 Hz and 1064 nm) damage for threshold fluence and greater fluence of GaAs 1 0 0 single crystal is presented. Damage which starts at a power 2×1011 W/cm2 in the form of pits occurs due to accumulation of laser induced microscopic defects. Effect of multiple pulse at first makes the pits more prominent in the form of Ga emission. Then the topmost layer is removed. If the number of pulses is further increased new pits are formed in the new surface (beneath the removed surface) and the above process is repeated. The thermal model is sufficient to explain this morphology. However, for larger fluences, a large cracking and fracture and the possibility of both Ga and As emission in different ratios suggest that mechanical damage is a dominant feature for higher fluences which arises due to generation of shock waves and rapid vaporization of material. Damage threshold has been calculated with the help of the thermal model given by Meyer et al. which is in good agreement with our experimental results.  相似文献   

3.
Femtosecond laser (180 fs, 775 nm, 1 kHz) ablation characteristics of the nickel-based superalloy C263 are investigated. The single pulse ablation threshold is measured to be 0.26±0.03 J/cm2 and the incubation parameter ξ=0.72±0.03 by also measuring the dependence of ablation threshold on the number of laser pulses. The ablation rate exhibits two logarithmic dependencies on fluence corresponding to ablation determined by the optical penetration depth at fluences below ∼5 J/cm2 (for single pulse) and by the electron thermal diffusion length above that fluence. The central surface morphology of ablated craters (dimples) with laser fluence and number of laser pulses shows the development of several kinds of periodic structures (ripples) with different periodicities as well as the formation of resolidified material and holes at the centre of the ablated crater at high fluences. The debris produced during ablation consists of crystalline C263 oxidized nanoparticles with diameters of ∼2–20 nm (for F=9.6 J/cm2). The mechanisms involved in femtosecond laser microprocessing of the superalloy C263 as well as in the synthesis of C263 nanoparticles are elucidated and discussed in terms of the properties of the material.  相似文献   

4.
The crystallographic nature of the damage created in GaN implanted by rare earth ions at 300 keV and room temperature has been investigated by transmission electron microscopy versus the fluence, from 7×1013 to 2×1016 at/cm2, using Er, Eu or Tm ions. The density of point defect clusters was seen to increase with the fluence. From about 3×1015 at/cm2, a highly disordered ‘nanocrystalline layer’ (NL) appears on the GaN surface. Its structure exhibits a mixture of voids and misoriented nanocrystallites. Basal stacking faults (BSFs) of I1, E and I2 types have been noticed from the lowest fluence, they are I1 in the majority. Their density increases and saturates when the NL is observed. Many prismatic stacking faults (PSFs) with Drum atomic configuration have been identified. The I1 BSFs are shown to propagate easily through GaN by folding from basal to prismatic planes thanks to the PSFs.When implanting through a 10 nm AlN cap, the NL threshold goes up to about 3×1016 at/cm2. The AlN cap plays a protective role against the dissociation of the GaN up to the highest fluences. The flat surface after implantation and the absence of SFs in the AlN cap indicate its high resistance to the damage formation.  相似文献   

5.
Interdiffusion phenomena, thermal damage and ablation of W/Si and Si/W bilayers and multilayers under XeCl-excimer laser (=308 nm) irradiation at fluences of 0.15, 0.3 and 0.6 J/cm2 were studied. Samples were prepared by UHV e-beam evaporation onto oxidized Si. The thickness of W and Si layers and the total thickness of the structures were 1–20 nm and 40–100 nm, respectively. 1 to 300 laser pulses were directed to the same irradiation site. At 0.6 J/cm2 the samples were damaged even by a single laser pulse. At 0.3 J/cm2 WSi2 silicide formation, surface roughening and ablation were observed. The threshold for significant changes depends on the number of pulses: it was between 3–10 pulses and 10–30 pulses for bilayers with W and Si surfaces, respectively, and more than 100 pulses for multilayers with the same total thickness of tungsten. At 0.15 J/cm2 the periodicity of the multilayers was preserved. Temperature profiles in layered structures were obtained by numerical simulations. The observed differences of the resistance of various bilayers and multilayers against UV irradiation are discussed.  相似文献   

6.
Surface texturing of the metals, including steels, gained a new dimension with the appearance of femtosecond lasers. These laser systems enable highly precise modifications, which are very important for numerous applications of metals. The effects of a Ti:sapphire femtosecond laser with the pulse duration of 160 fs, operating at 775 nm wavelength and in two operational regimes - single pulse (SP) and scanning regime, on a high quality AISI 1045 carbon steel were studied. The estimated surface damage threshold was 0.22 J/cm2 (SP). Surface modification was studied for the laser fluences of 0.66, 1.48 and 2.37 J/cm2. The fluence of 0.66 J/cm2, in both working regimes, induced texturing of the material, i.e. formation of periodic surface structures (PSS). Their periodicity was in accordance with the used laser wavelength. Finally, changes in the surface oxygen content caused by ultrashort laser pulses were recorded.  相似文献   

7.
An InP wafer was irradiated in air by a series of UV pulses from a nitrogen laser with fluences of 120 mJ/cm2 and 80 mJ/cm2. These fluences are below the single-pulse ablation threshold of InP. Over the studied region the distribution of the radiation intensity was uniform. The number of pulses varied from 50 to 6000. The evolution of the surface morphology and structure was characterized by atomic force microscopy, optical microscopy and Raman spectroscopy. The relationship between mound size and the number of pulses starts out following a power law, but saturates for a sufficiently high number of pulses. The crossover point is a function of fluence. A similar relation exists for the surface roughness. Raman spectroscopic investigations showed little change in local crystalline structure of the processed surface layer.  相似文献   

8.
The structural transformation dynamics of single-crystalline indium phosphide (InP) irradiated with 150 fs laser pulses at 800 nm has been investigated by means of time-resolved reflectivity measurements covering a time window from 150 fs up to 500 ns. The results obtained show that for fluences above a threshold of 0.16 J/cm2 thermal melting of the material occurs on the timescale of 1–2 ps. The evolution of the reflectivity on a longer timescale reveals the reflectivity of the liquid phase and shows resolidification times typically around 10–30 ns after which an amorphous layer several tens of nanometers thick is formed on the surface. This amorphous layer significantly alters the optical properties of the surface and finally leads to a reduced ablation threshold for subsequent laser pulses. Single-pulse ablation at higher fluences (>0.23 J/cm2) is preceded by an ultrafast phase transition (non-thermal melting) occurring within 400 fs after the arrival of the pulse to the surface. PACS 79.20.Ds; 78.47.+p; 64.70.-p  相似文献   

9.
GaN epilayers grown by metal organic chemical vapor deposition (MOCVD) were implanted with Tm and Eu ions with different energies and fluences and at different temperatures in order to optimize the implantation conditions. The recovery of the implantation damage was studied using both rapid thermal annealing and furnace annealing with nitrogen overpressure of 4×105 Pa. Rutherford backscattering spectrometry in the channeling mode (RBS/C) was used to monitor the evolution of damage introduction and recovery in the Ga-sublattice and transmission electron microscopy (TEM) was carried out for further structural analysis. The RBS/C spectra as well as TEM images show two different damage regions, one at the surface arising from an amorphous surface layer and another one deeper in the crystal coinciding with the end of range of the implanted ions. For implantation with 150 keV at room temperature, even for fluences as low as 3×1014 at/cm2, a thin amorphous surface layer, which becomes thicker with increasing implantation fluence, was observed by TEM. High temperature annealing of these highly damaged layers often results in loss of the amorphous layer and accumulation of the implanted species at the surface rather than a regrowth of the crystal. It was possible to prevent the formation of an amorphous layer by implanting at 500 C. In those samples a large part of the lattice damage was removed during annealing at 1000 C and the recovery of the lattice is similar for both applied annealing methods.  相似文献   

10.
3 N4 has been investigated. The ablation threshold in air, Φth, is around 0.3±0.1 J/cm2 with ArF- and 0.9±0.2 J/cm2 with KrF-laser radiation. With fluences Φth<Φ<4 J/cm2 the irradiated surface is either very flat or it exhibits a cone-type structure, depending on the number of laser pulses employed. With fluences of 5 to 10 J/cm2, the sample surface becomes very smooth, much smoother than the original mechanically polished surface. Pores, scratches, and cracks observed on the non-irradiated surface are absent within the illuminated area. In this regime, the ablation rates are typically 0.1 to 0.2 μm/pulse. Received: 10 April 1997/Accepted: 11 April 1997  相似文献   

11.
In the present paper, polyimide surfaces were processed with pulsed KrF laser radiation at fluences near the ablation threshold. The morphology of the processed surfaces was studied by scanning electron microscopy and chemical analyses performed by electron dispersive spectroscopy. The formation of conical structures was observed for radiation fluences lower than 0.5 J/cm2. The areal density of cones increases with the number of pulses and decreases with the radiation fluence. At low fluences (<150 J/cm2), cones are formed due to shadowing by calcium phosphate impurities while for higher fluences the main mechanism of cones formation is believed to be radiation hardening.  相似文献   

12.
Picosecond laser (10.4 ps, 1064 nm) ablation of the nickel-based superalloy C263 is investigated at different pulse repetition rates (5, 10, 20, and 50 kHz). The two ablation regimes corresponding to ablation dominated by the optical penetration depth at low fluences and of the electron thermal diffusion length at high fluences are clearly identified from the change of the surface morphology of single pulse ablated craters (dimples) with fluence. The two corresponding thresholds were measured as F th(D1)1=0.68±0.02 J/cm2 and F th(D2)1=2.64±0.27 J/cm2 from data of the crater diameters D 1,2 versus peak fluence. The surface morphology of macroscopic areas processed with a scanning laser beam at different fluences is characterised by ripples at low fluences. As the fluence increases, randomly distributed areas among the ripples are formed which appear featureless due to melting and joining of the ripples while at high fluences the whole irradiated surface becomes grainy due to melting, splashing of the melt and subsequent resolidification. The throughput of ablation becomes maximal when machining at high pulse repetition rates and with a relatively low fluence, while at the same time the surface roughness is kept low.  相似文献   

13.
This study investigates the effect of high intensity focused ultrasound (HIFU) to muscle tissue transfected with a luciferase reporter gene under the control of a CMV-promoter. HIFU was applied to the transfected muscle tissue using a dual HIFU system. In a first group four different intensities (802 W/cm2, 1401 W/cm2, 2117 W/cm2, 3067 W/cm2) of continuous HIFU were applied 20 s every other week for four times. In a second group two different intensities (802 W/cm2, 1401 W/cm2) were applied 20 s every fourth day for 20 times. The luciferase activity was determined by bioluminescence imaging. The effect of HIFU to the muscle tissue was assessed by T1-weighted ± Gd-DTPA, T2-weighted and a diffusion-weighted STEAM sequence obtained on a 1.5-T GE-MRI scanner. Histology of the treated tissue was done at the end. In the first group the photon emission was at 3067.6 W/cm2 1.28 × 107 ± 3.1 × 106 photon/s (5.5 ± 1.2-fold), of 2157.9 W/cm2 8.1 ± 2.7 × 106 photon/s (3.2 ± 1.1-fold), of 1401.9 W/cm2 9.3 ± 1.3 × 106 photon/s (4.9 ± 0.4-fold) and of 802.0 W/cm2 8.6x ± 1.2 × 106 photon/s (4.5 ± 0.6-fold) compared to baseline. In the second group the photon emission was at 1401.9 W/cm2 and 802.0 W/cm2 14.1 ± 3.6 × 106 photon/s (6.1 ± 1.5-fold), respectively, 5.1 ± 4.7 × 106 photon/s (6.5 ± 2.0-fold). HIFU can enhance the luciferase activity controlled by a CMV-promoter.  相似文献   

14.
The pure rotational spectrum of CH2F2 was recorded in the 20–100 cm−1 spectral range and analyzed to obtain rotation and centrifugal distortion constants. Analysis of the data yielded rotation constants: A = 1.6392173 ± 0.0000015, B = 0.3537342 ± 0.00000033, C = 0.3085387 ± 0.00000027, τaaaa = −(7.64 ± 0.46) × 10−5, τbbbb = −(2.076 ± 0.016) × 10−6, τcccc = −(9.29 ± 0.12) × 10−7, T1 = (4.89 ± 0.20) × 10−6, and T2 = −(1.281 ± 0.016) × 10−6cm−1.  相似文献   

15.
The laser-induced backside etching of fused silica with gallium as highly absorbing backside absorber using pulsed infrared Nd:YAG laser radiation is demonstrated for the first time. The influence of the laser fluence, the pulse number, and the pulse length on the etch rate and the etched surface topography was studied. The comparable high threshold fluences of about 3 and 7 J/cm2 for 18 and 73 ns pulses, respectively, are caused by the high reflectivity of the fused silica-gallium interface and the high thermal conductivity of gallium. For the 18 and 73 ns long pulses the etch rate rises almost linearly with the laser fluence and reaches a value of 350 and 300 nm/pulse at a laser fluence of about 12 and 28 J/cm2, respectively. Incubation processes are almost absent because etching is already observed with the first laser pulse at all etch conditions and the etch rate is constant up to 30 pulses.The etched grooves are Gaussian-curved and show well-defined edges and a smooth bottom. The roughness measured by interference microscopy was 1.5 nm rms at an etch depth of 0.6 μm. The laser-induced backside etching with gallium is a promising approach for the industrial application of the backside etching technique with IR Nd:YAG laser.  相似文献   

16.
We have studied the plasma formation and ablation dynamics in fused silica upon irradiation with a single 120 fs laser pulse at 800 nm by using fs-resolved pump-probe microscope. It allows recording images of the laser-excited surface at different time delays after the arrival of the pump pulse. This way, we can extract both the temporal evolution of the surface reflectivity and transmission, at 400 nm, for different spatial positions in the spots (and thus for different local fluences) from single series of images. At fluences well above the visible ablation threshold, a fast and large increase of the reflectivity is induced by the formation of a dense free-electron plasma. The maximum reflectivity value is reached within ≈1.5 ps, while the normalized transmission decreases within ≈400 fs. The subsequent temporal evolution of both transient reflectivity and transmission are consistent with the occurrence of surface ablation. In addition, the time-resolved images reveal the existence of a free-electron plasma distribution surrounding the visible ablation crater and thus formed at local fluences below the ablation threshold. The lifetime of this sub-ablation plasma is ≈50 ps, and its maximum electron density amounts to 5.5×1022 cm−3.  相似文献   

17.
In the previous work, low-power laser/arc hybrid welding technique is used to weld magnesium alloy and high-quality weld joints are obtained. In order to make clear the interactions between low-power laser pulse and arc plasma, the effect of arc plasma on laser pulse is studied in this article. The result shows that the penetration of low-power laser welding with the assistance of TIG arc is more than two times deeper than that of laser welding alone and laser welding transforms from thermal-conduction mode to keyhole mode. The plasma behaviors and spectra during the welding process are studied, and the transition mechanism of laser-welding mode is analyzed in detail. It is also found that with the assistance of arc plasma, the threshold value of average power density to form keyhole welding for YAG laser is only 3.3×104 W/cm2, and the average peak power density is 2.6×105 W/cm2 in the present experiment. Moreover, the distribution of energy density during laser pulse is modulated to improve the formation and stability of laser keyholes.  相似文献   

18.
Femtosecond ablation of ultrahard materials   总被引:4,自引:0,他引:4  
Several ultrahard materials and coatings of definite interest for tribological applications were tested with respect to their response when irradiated with fs laser pulses. Results on cemented tungsten carbide and on titanium carbonitride are reported for the first time and compared with outcomes of investigations on diamond and titanium nitride. The experiments were carried out in air, in a regime of 5–8 J/cm2 fluences, using the beam of a commercial Ti:sapphire laser. The changes induced in the surface morphology were analysed with a Nomarski optical microscope, and with SEM and AFM techniques. From the experimental data and from the calculated incident energy density distributions, the damage and ablation threshold values were determined. As expected, the diamond showed the highest threshold, while the cemented tungsten carbide exhibited typical values for metallic surfaces. The ablation rates determined (under the above-mentioned experimental conditions) were in the range 0.1–0.2 μm per pulse for all the materials investigated. Received: 31 August 2001 / Accepted: 3 December 2001 / Published online: 20 March 2002  相似文献   

19.
In this study, results in the irradiation of stainless steel AISI 304 in air with nanosecond laser pulses at laser irradiation power density 4×107 W/cm2 are reported. Laser processing parameters, such as wavelengths 532 and 1064 nm, pulse duration 20 ns and repetition rate 10 Hz were used. It is shown that the surface morphology of the stainless steel is related to the number of pulses applied to the same spot. The following surface morphological changes were observed: (i) occurrence of the micro-grains microstructures at wavelengths 532 and 1064 nm after 10 000 pulses irradiation and (ii) occurrence of vermiform-like microstructures at wavelength 1064 nm after 1000 pulses irradiation. Generally, it is concluded that irradiation due to several consecutive pulses caused significant damage and enhanced the stainless steel surface roughness.  相似文献   

20.
The effect α particle fluences (3 × 103−2 × 1015 cm −2) on properties of the two types of phosphate glass detectors with different compositions was studied. It was shown that the registration properties of glass detectors depended on the α particle fluence, spatial distribution of the α particle paths, and glass type. The critical α particle fluences, above which the detector properties changed, were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号