首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The interaction of berberine with nucleic acid in the presence of cetyltrimethylammonium bromide (CTMAB) in aqueous solution has been studied by spectrophotometry and resonance light scattering (RLS) spectroscopy. At pH 7.30, the RLS signals of berberine were greatly enhanced by nucleic acid in the region of 300-600 nm characterized by four peaks at 324.0, 386.5, 416.5 and 465.0 nm. The binding properties were examined by using a Scatchard plot based on the measurement of enhanced RLS data at 416.5 nm. Under optimum conditions, the increase of RLS intensity of this system at 416.5 nm is proportional to the concentration of nucleic acid. The linear range is 7.5 x 10(-9)-7.5 x 10(-5) g ml(-1) for calf thymus DNA, 7.5 x 10(-9)-2.5 x 10(-5) g ml(-1) for herring sperm DNA, and 5.0 x 10(-9)-2.5 x 10(-5) g ml(-1) for yeast RNA. The detection limits (S/N = 3) are 2.1 ng ml(-1) for calf thymus DNA, 6.5 ng ml(-1) for herring sperm DNA and 3.5 ng ml(-1) for yeast RNA, respectively. Three synthetic samples were analyzed satisfactorily.  相似文献   

2.
《Analytical letters》2012,45(12):2395-2415
ABSTRACT

The interactions of nile blue sulphate (NBS) with nucleic acids, including calf thymus DNA, fish sperm DNA and yeast RNA, were characterized with resonance light-scattering (RLS) measurements by using a common spectrofluorometer. Accordingly a method for the determination of nucleic acids at nanogram levels was established. At pH's of 7.20~7.60 and ionic strengths lower than 0.012, the interactions of NBS with nucleic acids result in three characteristic RLS peaks at 293.4 nm, 349.4 nm and 560.4 nm. Mechanism study shows that these peaks are ascribed to the long range assembly of NBS on the molecular surface of nucleic acids, which depends on pH, ionic strength and the stranded structure of nucleic acids. A Scatchard plot was constructed by using the RLS data, yielding the assembly number and assembly constant being 6.4 and 7.13x106 mol?1 1 for NBS assembly on the molecular surface of calf thymus DNA. The same parameters are 6.6 and 4.58x106 mol?1 1 for the assembly on that of fish sperm DNA, 3.9 and 1.67x106 mol?1 1 on that of yeast RNA, respectively. Linear relationships were found between the enhanced RLS intensity at 293.4 nm and nucleic acid concentration. If 1.2x10?5 mol I?1 NBS was employed, 0~0.80 μg ml?1 calf thymus DNA and fish sperm DNA, 0.20~0.60 μg ml?1 yeast RNA can be determined with the determination limits being 3.2 ng ml?1 for calf thymus DNA, 11.5 ng ml?1 for fish sperm DNA and 38.3 ng ml?1 for yeast RNA, respectively. Four synthetic samples were determined with satisfaction.  相似文献   

3.
Using a common spectrofluorometer to measure the intensity of Rayleigh light-scattering (RLS), a method for determination of nucleic acids has been developed. At pH 10.24 and ionic strength 0.01 mol l-1 (NaCl), the Rayleigh light-scattering of the tetra-(N-hexadecylpyridiniumyl) porphyrin (TC16PyP) is greatly enhanced by nucleic acids in the presence of cetyltrimethylammonium bromide (CTMAB), with the scattering peak located at 311.8 nm. The enhanced RLS intensity is in proportion to the concentration of calf thymus DNA (ctDNA) in the range 0.2-6.0 microg ml-1 and to that of fish sperm DNA (fsDNA) in the range 0.05-3.0microg ml-1. The limits of detection are 0.016 microg ml-1 for calf thymus DNA and 0.023 microg ml-1 for fish sperm DNA when the concentration of TPP was chosen 2.0 x 10(-6) mol l-1. Four synthetic samples were determined satisfactorily.  相似文献   

4.
It is found that in hexamethylene tetramine (HMTA)-HCl buffer of pH 7.00, nucleic acids can quench the resonance light scattering (RLS) of europium (III) (Eu3+)-2-thenoyltrifluoroacetne (TTA)-1,10-phenanthroline (Phen) system. Based on this, a sensitive method for the determination of nucleic acids is proposed. The experiments indicate that under the optimum conditions, the quenched RLS intensity is in proportion to the concentration of nucleic acids in the range of 1.0x10(-10) to 2.0x10(-6) g ml-1 for fish sperm (fsDNA), 1.0x10(-11) to 1.0x10(-6) g ml-1 for yeast RNA (yRNA), 5.0x10(-11) to 5.0x10(-7) g ml-1 for calf thymus DNA (ctDNA). Their detection limits (S/N=3) are 0.03, 0.006 and 0.002 ng ml-1, respectively. Therefore, the proposed method is the most sensitive RLS method for the determination of nucleic acids so far. The interaction between nucleic acids and Eu3+-TTA-Phen is also discussed.  相似文献   

5.
This is the first report on the determination of nucleic acids with Pyronine B (PB) sensitized by cetyltrimethylammonium bromide (CTMAB) with resonance light-scattering (RLS) technique. Under the experimental conditions (1 x 10(-5) mol l(-1) PB, 1 x 10(-5) mol l(-1) CTMAB, pH 7.4, at room temperature, ionic strength 0.02 mol l(-1) NaCl), the interaction of PB with DNA sensitized by CTMAB results in enhanced RLS signals at 328 and 377 nm in the enhanced regions. It was found that the enhanced RLS intensity at 328 nm was proportional to the concentration of DNA in the suitable ranges. The linear range of this assay is 0.0-1.2 microg ml(-1) for calf thymus, 0.0-0.8 microg ml(-1) for fish sperm DNA (fsDNA), and 0.04-1.4 microg ml(-1) for yeast RNA, respectively. The detection limits (3 sigma) are 6.1 ng ml(-1) for calf thymus DNA (ctDNA), 11.2 ng ml(-1) for fish sperm DNA, and 8.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined satisfactorily. This method is simple, rapid and the dye is inexpensive and stable.  相似文献   

6.
Li Z  Li K  Tong S 《Talanta》2000,51(1):63-70
The large particle light scattering technique was first developed as a sensitive and convenient analysis method for microdetermination of nucleic acids by using a common spectrofluorometer. In 0.1 mol l(-1) HCl, H(2)SO(4), or HNO(3) solution, the nucleic acids can aggregate to form large particles whose dimensions are comparable to the wavelength of UV-Vis light. The large particles can result in very strong light scattering which is well proportional to the concentration of nucleic acids in the range of 0.06-100.0 mug ml(-1) for calf thymus DNA, 0.05-60.0 mug ml(-1) for fish sperm DNA, and 0.6-90.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 18.0 ng ml(-1) for calf thymus DNA, 16.0 ng ml(-1) for fish sperm DNA, and 57.6 ng ml(-1) for yeast RNA, respectively. Six synthetic samples were determined with satisfactory results.  相似文献   

7.
《Analytical letters》2012,45(10):1705-1717
Abstract

The ternary fluorescent complexes of nucleic acids/8-hydroxyquinoline/ lanthanum (III) were studied. Nucleic acids in the study involve natured and thermally denatured calf thymus DNA, fish sperm DNA and yeast RNA. In the range of pH 8.0–8.4 (controlled by NH3-NH4Cl buffer) ternary fluorescent complexes are formed which emit at 485.0 nm for calf thymus DNA and at 480.0 nm for yeast RNA (when excited at 267.0 nm) and emits at 483.0 nm for fish sperm DNA when excited at 265.0 nm. Based on the fluorescence reactions sensitive fluorometric methods for nucleic acids were proposed. Using optimal conditions, the calibration curves were linear in the range of 0.4–3.6 μg˙ml?1 for calf thymus DNA, 0.4–4.0 μg-ml?1 for fish sperm DNA and 0.4–4.0 μg˙ml?1 for yeast RNA, respectively. The limits of determination (3σ) were 0.076 μg˙ml?1 for calf thymus DNA, 0.068 μg˙ml?1 for fish sperm DNA and 0.329 μg˙ml?1 for yeast RNA, respectively. Five synthetic samples were determined with satisfaction.

  相似文献   

8.
Li Z  Li K  Tong S 《The Analyst》1999,124(6):907-910
Nucleic acids can form large particle complexes with protamine sulfate by electrostatic forces, which results in strong light scattering. Based on this, a nephelometric method is described for sensitive and convenient determination of nucleic acids with protamine sulfate by using a common spectrofluorimeter. Maximum light scattering is produced in the range of pH 2.2-4.4 with the same excitation and emission wavelengths at 365 nm. Under optimal conditions, the calibration curves are linear in the range 0.05-60.0 micrograms cm-3 for nucleic acids. The corresponding detection limits are 12.5 ng cm-3 for calf thymus DNA, 9.0 ng cm-3 for fish sperm DNA, and 18.0 ng cm-3 for yeast RNA, respectively. Six synthetic samples are determined with satisfactory results. The relative standard deviation of five replicate measurements is 3.2% for 2.0 micrograms cm-3 calf thymus DNA.  相似文献   

9.
A new method for the determination of nucleic acids has been developed based on the enhancement effect of resonance light scattering (RLS) with a cationic near infrared (NIR) cyanine dye. Under the optimal conditions, the enhanced RLS intensity at 823 nm is proportional to the concentration of nucleic acids in the range of 0-400 ng mL-1 for both calf thymus DNA (CT DNA) and fish sperm DNA (FS DNA), 0-600 ng mL-1 for snake ovum RNA (SO RNA). The detection limits are 3.5 ng mL-1, 3.4 ng mL-1 and 2.9 ng mL-1 for CT DNA, FS DNA and SO RNA, respectively. Owing to performing in near infrared region, this method not only has high sensitivity endowed by RLS technique but also avoids possible spectral interference from background. It has been applied to the determination of nucleic acids in synthetic and real samples and satisfactory results were obtained.  相似文献   

10.
Li ZP  Li KA  Tong SY 《Talanta》2001,55(4):669-675
Based on the strong enhancement effect of nucleic acids on resonance light scattering of dequalinium chloride, the determination method for micro amounts of nucleic acids has been developed. Under the experimental conditions (5.0x10(-5) mol l(-1) dequalinium, pH 7.0, at room temperature) the linear range of this assay is 0.04-10.0 mug ml(-1) for calf thymus DNA and fish sperm DNA, and 0.04-35.0 mug ml(-1) for yeast RNA. The detection limits (3sigma) are 6.2 ng ml(-1) for calf thymus DNA, 7.4 ng ml(-1) for fish sperm DNA, and 7.0 ng ml(-1) for yeast RNA, respectively. Almost no interference can be observed from ionic strength, proteins, nucleoside, and most of the metal ions. Six synthetic samples were determined satisfactorily.  相似文献   

11.
Huang CZ  Li YF  Huang XH  Li M 《The Analyst》2000,125(7):1267-1272
A novel assay of DNA with a sensitivity at the nanogram level is proposed based on the measurement of enhanced resonance light scattering (RLS) signals resulting from the interaction of Janus Green B (JGB) with DNA. At pH 6.37 and ionic strength < 0.20, the RLS signals of JGB were greatly enhanced by DNA in the region of 300-650 nm characterized by three peaks at 416.0, 452.0 and 469.2 nm. The binding properties were examined using a Scatchard plot based on the measurement of the enhanced RLS data at 416.0 nm at a high JGB: DNA molar ratio (R > 2.22), and an aggregation mechanism of JGB in the presence of DNA at the nanogram level is proposed. Linear relationships can be established between the enhanced RLS intensity and DNA concentration in the range 0-3.5 micrograms ml-1 for both calf thymus DNA (ctDNA) and fish sperm DNA (fsDNA) if 2.0 x 10(-5) M JGB is employed. The limits of determination were 8.7 ng ml-1 for ctDNA and 9.9 ng ml-1 for fsDNA, respectively. Synthetic samples were analysed satisfactorily.  相似文献   

12.
Based on the enhancement of the resonance light scattering (RLS) of Congo Red (CR) by nucleic acid, a new quantitative method for nucleic acid is developed. In the Tris-HCl buffer (pH 10.5), the weak light scattering of CR is greatly enhanced by addition of nucleic acid and CTMAB, the maximum peak is at 560 nm and the enhanced intensity of RLS is in proportion to the concentration of nucleic acid. The linear range is 1.0 x 10(-9) to 1.0 x 10(-6) g ml(-1), 7.5 x 10(-8) to 1.0 x 10(-6) g ml(-1) and 7.5 x 10(-8) to 2.5 x 10(-6) g ml(-1) for herring sperm DNA, calf thymus DNA and yeast RNA, and the detection limits are 0.019, 0.89 and 1.2 ng ml(-1) (S/N = 3), respectively. Actual biological samples were satisfactorily determined.  相似文献   

13.
核酸对氯化银胶体溶液共振光散射的猝灭作用及其应用   总被引:7,自引:0,他引:7  
朱昌青  李东辉  郑洪  朱庆枝  许金钩 《分析化学》2000,28(12):1485-1488
报道了一种测定水溶液中核酸的方法,该法基于核酸对氯化银溶胶共振射光的猝灭作用。在理想测定条件下,散射光的猝灭程度正比于核酸的浓度,三种核酸(calf thymus DNA,herring DNA and YeastRNA)的线性范围分别为0-20μg/L,0-60μg/L和0-80μg/L,检测限分别为0.65μg/L,1.1μg/L和1.9μg/L。6种合成样品的测定结果令人满意,机理研究结果表明,核酸中的碱基(尤其是嘌呤碱)同银离子具有很强的结合能力,这种结合影响了氯化银的沉淀平衡,导致了氯化银溶胶共振散射光的猝灭。  相似文献   

14.
A new method with a cationic near-IR cyanine as fluorescent probe was developed for the determination of nucleic acids. The near-IR cyanine shows maximum excitation and emission wavelengths at 765 and 790 nm, respectively, in aqueous solution. The method is based on the fluorescence decrease of near-IR cyanine in the presence of nucleic acids. Under optimal conditions, the ratio of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of nucleic acids over the range 0.10-1.2 microg/mL for CT (calf thymus) DNA or SM (salmon sperm) DNA, and 0.10-1.6 microg/mL for yeast RNA. The detection limits were 30 ng/mL for CT DNA, 25 ng/mL for SM DNA and 70 ng/mL for yeast RNA. The relative standard deviation (n = 6) was 2.1% for 500 ng/mL CT DNA, 2.4% for 500 ng/mL SM DNA and 2.7% for 500 ng/mL yeast RNA, respectively.  相似文献   

15.
In buffer medium of hexamethylene tetraamine-HCl at pH 5.9 the aluminium(III) complex with salicylidene-o-aminophenol (SAP) has a fluorescence peak at 508 nm with excitation at 410 nm. When nucleic acid coexists, it reacts with the complex within 8 min at room temperature to produce a non-fluorescent product, resulting in the decrease of fluorescence intensity of the aluminium complex. On basis of this, a new fluorometric method for nucleic acids determination is proposed. The calibration graphs for calf thymus DNA, fish sperm DNA and yeast RNA are linear up to 5.0, 4.0 and 3.0 microg ml(-1), respectively, and corresponding detection limits are 49, 52 and 62 ng ml(-1). The synthetic samples are analyzed with relative standard deviation of five measurements of 3.9-6.0%. DNA in an extraction product from human blood is determined using the calibration graph for calf thymus DNA, and the result is very close to that by the ethidium bromide assay. Compared with some established fluorometric methods, this procedure is sensitive, selective, reliable, reproducible and practical. The association constant of calf thymus DNA with the complex is estimated by two graphic methods. It is suggested that the binding reaction between nucleic acids with the complex proceeds in an intercalation way.  相似文献   

16.
Du X  Sasaki S  Nakamura H  Karube I 《Talanta》2001,55(1):93-98
The interaction of histone with nucleic acids was characterized by light-scattering measurement using a common spectrofluorometer. Thereby, a sensitive and convenient method for the determination of nucleic acids was established. At pH 4.5-6.5, the interaction of histone with nucleic acids resulted in considerable light-scattering , and four characteristic peaks at 298, 450, 503, and 551 nm were observed. The light-scattering was applied to the determination of nucleic acids. The experiments indicated that, under optimal conditions, a linear relationship was obtained between the light-scattering intensity (I(LS)) and the concentration of nucleic acids. The linear ranges were 0.02-2.0 mug ml(-1) for fish sperm DNA (fsDNA), 0.05-1.5 mug ml(-1) for calf thymus DNA (ctDNA), 0.05-2.5 mug ml(-1) for Herring testis DNA (HtDNA), and 0.05-1.5 mug ml(-1) for human placenta DNA (hpDNA). The detection limits were 2.0 ng for fish sperm DNA, 2.0 ng for calf thymus DNA, 5.0 ng for Herring testis DNA, and 3.0 ng for human placenta DNA. The nucleic acids in yeast cell extraction were determined by simple vortex extraction. The results were satisfactory, and the recovery rates were in the range of 88-108%.  相似文献   

17.
The nano-Ag-terbium(III)-mucleic acids system was observed by a resonance light scattering (RLS) technique for the first time, and the quantitative analysis of nucleic acids at nanogram levels was established. Studies showed that the RLS intensity of the nano-Ag-terbium(III) system can be obviously enhanced by nucleic acid, which was characterized by the RLS spectrum and the UV-Vis spectrum. In this system, the nanoparticles were only of a definite size and in a limited particle concentration region. Further research indicated that under the optimum conditions, the enhanced intensity of RLS is in proportion to the concentration of nucleic acids in the ranges of 7.0 x 10(-9) g ml(-1) to 8.0 x 10(-6) g ml(-1) for calf thymus DNA (ctDNA), 2.0 x 10(-8) g ml(-1) to 1.0 x 10(-6) g ml(-1) for fish sperm DNA (fsDNA) and 1.0 x 10(-9) g ml(-1) to 1.0 x 10(-7) g ml(-1) for yeast RNA (yRNA). The detection limits were 1.4 ng ml(-1) for ctDNA, 1.2 ng ml(-1) for fsDNA and 0.85 ng ml(-1) for yRNA, respectively. Synthetic and real samples were determined satisfactorily.  相似文献   

18.
Resonance Rayleigh scattering (RRS) of the thionine (TH)-nucleic acids system and its analytical application have been studied. In pH 2.2 acidic buffer medium, some nucleic acids can react with TH to form TH-nucleic acids complex. This results in a great enhancement of RRS and the appearance of new RRS spectra. The RRS spectral characteristics of TH-ctDNA system, the affecting factors and the optimum conditions of the reaction have been investigated. The enhancement of the RRS signal is directly proportional to the concentration of nucleic acids in the range 0-10.0 microg/ml for calf thymus DNA and 0-15.0 microg/ml for yeast RNA, and its detection limits (3sigma) are 3.5 ng/ml for calf thymus DNA and 4.9 ng/ml for yeast RNA, respectively. The method shows a wide linear range and high sensitivity, and was applied to the determination of trace amounts of nucleic acid in synthetic samples and practical samples with satisfactory results. The bind properties for the interactions of TH with ctDNA were investigated using a Scatchard plot based on the measurement of the enhanced RRS data at 340 nm, and the binding number and intrinsic binding constant are 4.9 and 2.6 x 10(5) mol/dm(3), respectively.  相似文献   

19.
A new method with a cationic near-IR cyanine as fluorescent probe was developed for the determination of nucleic acids. The near-IR cyanine shows maximum excitation and emission wavelengths at 765 and 790 nm, respectively, in aqueous solution. The method is based on the fluorescence decrease of near-IR cyanine in the presence of nucleic acids. Under optimal conditions, the ratio of fluorescence intensity in the absence and presence of nucleic acids was proportional to the concentration of ¶nucleic acids over the range 0.10–1.2 μg/mL for CT (calf thymus) DNA or SM (salmon sperm) DNA, and 0.10–¶1.6 μg/mL for yeast RNA. The detection limits were ¶30 ng/mL for CT DNA, 25 ng/mL for SM DNA and ¶70 ng/mL for yeast RNA. The relative standard deviation (n = 6) was 2.1% for 500 ng/mL CT DNA, 2.4% for ¶500 ng/mL SM DNA and 2.7% for 500 ng/mL yeast RNA, respectively.  相似文献   

20.
A novel method for the determination of nucleic acids by using silver nanoparticle (AgNPs)-eriochrome black T (EBT) as a resonance light scattering (RLS) probe has been developed. Under optimum conditions, there are linear relationships between the quenching extent of RLS intensity and the concentration of nucleic acids in the range of 4.0×10(-9)-4.0×10(-7), 4.0×10(-7)-1.6×10(-6) g mL(-1) for fish sperm DNA (fsDNA) and 4.0×10(-8)-2.0×10(-6) g mL(-1) for yeast RNA (yRNA). Their detection limits (S/N=3) are 2.0 ng mL(-1) and 21 ng mL(-1), respectively. The results indicate that AgNPs can form wirelike aggregates and nanoslices in the presence of the EBT. Whereas, when nucleic acids are added into the AgNPs-EBT system, the dynamic balance of AgNPs-EBT system is destroyed and the nanoparticles undergo dispersion again, leading to the RLS intensity of AgNPs-EBT system quenching. Meanwhile, the conformation of fsDNA is changed by the synergistic effect of AgNPs and EBT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号