首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
在K原子密度约为0.5-5×1016cm-3的样品池中,脉冲激光710nm线双光子激发K2基态到高位1∧g 态,研究了K2( 1∧g)+ K(4S)碰撞转移过程。K原子密度由测量KD2线蓝翼对白光的吸收得到。测量不同K密度下 1∧g态发射的时间分辨荧光强度,它是一条指数衰减曲线,由此得到1∧g态的有效寿命,从描绘出的有效寿命倒数与K原子密度关系直线的斜率得到1∧g 态总的碰撞猝灭截面为 ,从截距得到的辐射寿命为 。测量了K的6S →4P3/2和4D→4P3/2 在不同K密度下的时间积分荧光强度,得到了K2( )+K→K2( )+K(6S,4D)碰撞转移截面为 (对转移到6S)和 (对转移到4D)。  相似文献   

2.
高位K_2分子与基态K原子及H_2分子间的激发转移   总被引:1,自引:0,他引:1  
激光双光子激发K2至1Λg高位态,利用分子荧光光谱方法,研究了1Λg-3Λg间的碰撞转移截面。在纯K实验中,池温控制在553至603 K之间,K原子密度由光学吸收法测量得到。探测1Λg-11Σu+的直接时间分辨荧光的光强,它是一条纯指数衰减曲线,由此得到1Λg+态的有效寿命,有效寿命的倒数与K密度成线性关系,从直线的斜率得到1Λg态的猝灭截面为(2.5±0.3)×10-14cm2,从截距得到辐射寿命为(20±2)ns。由3Λg→13Σu+转移荧光的时间分辨谱,用类似的方法得到3Λg的猝灭截面为(2.5±0.6)×10-14cm2,辐射寿命为(16.0±3.2)ns。由1Λg→11Σu+与3Λg→13Σu+的时间积分强度比得到K2(1Λg)+K→K2(3Λg)+K的转移截面为(1.1±0.3)×10-14cm2。在K2-H2碰撞实验中,池温保持在553 K,K密度为5×1015cm-3,H2气压在40~400 Pa之间,其中K2-K碰撞效应是不能略去的,但可以用纯K结果扣除,得到K2(1Λg)+H2→K2(3Λg)+H2的碰撞转移截面为(2.7±1.1)×10-15cm2。K2(3Λg)+H2→K2(3Λg)以外态+H2的猝灭截面为(6.8±2.7)×10-15cm2。  相似文献   

3.
激光双光子激发K原子至6s或4D态,测鼍了K(6S,4D)与H2的碰撞转移截面.池温在413K,H2气压在4~40 Pa范围内,K(6S,4D)-K的碰撞效应可略去.在激发6S态的情况下,记录6S→4P时间分辨荧光信号,从荧光强度的对数描绘出的直线斜率得到6S态的有效寿命,而4D态的布居随H2的增加而增加,因此引起4D→4P跃迁谱线的增强.在激发4D态的情况下,采用类似方法得到4D态的有效寿命,由Stern Volmet方程,测得6S和4D态的辐射寿命分别为(97±15)ns和(300±45)ns.激发态K原子总的碰撞去佰居截面为(1.6±0.3)×10-14cm2(对6S态)和(40±6)×10-16cm2(对4D态).该总截面中包含向K原子激发态的非反应碰撞转移截面以及与H2反应生成KH的反应截面.激发6S态,测量4D→4P的时间积分荧光强度随H2气压的变化,得到6S→4D的碰撞转移截面为(1.4±0.3)×10-14cm2.由此得到结论:K(6S)态主要是通过物理猝灭到K(4D)态,虽然在K(6S)+H2的碰撞中,观察到了由于化学反应生成的KH的存在.  相似文献   

4.
在9×1014~2.1×1015cm-3 Cs密度范围内,利用脉冲激光双光子激发Cs(6S1/2)到Cs(6D5/2)态,使用原子荧光光谱方法,通过三能级模型的速率方程分析,由对直接荧光和转移荧光的时间积分强度的测量,得到6D5/2→6D3/2精细结构转移截面为(2.1±0.4)×10-14cm2,而6D3/2态向6D以外态的转移截面为(1.6±0.4)×10-14cm2,它应是过程Cs(6 D3/2)+Cs(6S)→Cs(6P)+Cs(6P),6D3/2→7P3/2和6D3/2→7 P1/2碰撞转移截面之和.第二个实验可以得到6 D3/2→7P3/2和6D3/2→7 P1/2的碰撞转移截面.在1×1012~6×1012cm-3的低密度Cs蒸气中,激光双光子激发6S至6D3/2或6D5/2态,测量6DJ→6PJ'与7PJ"→6S1/2的时间积分荧光强度比,得到6D3/2→7P1/2与6D5/2→7R3/2的碰撞转移截面分别为(7.6±2.4)×10-15cm2与(1.6±0.5)×10-15cm2.由此得到碰撞能量合并的逆过程即[Cs(6D3/2)+Cs(6S1/2)→Cs(6P)+Cs(6P)]的转移截面为(1.3±0.4)×10-14cm2.  相似文献   

5.
利用770nm脉冲激光激发基态K原子到K(4P1/2)态,在样品池中,利用原子荧光光谱方法,测量了K(4PJ)和N2、He碰撞的精细结构转移截面和碰撞猝灭截面。在不同N2、He气体密度下,通过对4P1/2→4S1/2共振荧光与4P3/2→4S1/2转移荧光的时间积分荧光强度进行测量,得到其荧光强度比与N2、He密度成线性关系。从荧光强度比R与(Nv)-1线性关系图中的直线斜率可以得到4P1/2→4P3/2转移截面为(2.77±0.69)×10-15cm2和4P3/2→4P1/2的碰撞转移截面为(1.62±0.41)×10-15cm2,从直线的截距计算出K(4P3/2)与N2、He的碰撞猝灭截面为(0.40±0.12)×10-15cm2和(0.60±0.18)×10-16cm2。  相似文献   

6.
在Cs2密度约为2×1013 cm-3的纯Cs样品池中,脉冲激光激发Cs2(X1 Σg+)至B 1Πu态,利用原子和分子荧光光谱方法研究了Cs2(B 1Πu)+Cs(6S)的碰撞激发转移过程.用736 nm激发Cs2到B 1Πu(v<10),这时预解离不发生.由B 1Πu→X1 Σg+时间分辨跃迁信号得到B 1Πu态的辐射寿命为(35±7)ns,B1Πu态与Cs原子碰撞转移总截面为(4.0±0.5)×10-14 cm2.用705 nm激发至B 1Πu(v>30)态,这时发生预解离,在不同的Cs密度下,测量了I(D1),I(D2)和分子带的时间积分荧光的相对强度,得到了预解离率为(4.3±1.7)×105 s-1(对预解离到6P3/2)和(4.7±1.9)×106 s-1(对预解离至6P1/2);碰撞转移截面为(0.45±0.18)×10-14 cm2(对转移到6 P1/2)和(4.3±1.7)×10-14 cm2(对转移到6P3/2).结果表明,如果B 1Πu(v)是束缚的,6P原子由碰撞转移产生;如果B 1Πu(v)是预解离的,则6P原子由预解离和碰撞转移产生.  相似文献   

7.
Cs(8S)态的碰撞转移和高位原子态的激发   总被引:1,自引:1,他引:0  
在Cs蒸气中,二步激发Cs原子至8S态,研究了其碰撞转移和高位原子态的产生过程.在1016~1017 cm-3密度范围内,测量了碰撞激发转移8S 6S→6D 6S的速率系数.由测得的荧光强度随密度的变化关系,得到k6D=(2.4±0.5)×10-10 cm3·s-1.同时研究了碰撞能量合并过程5D 5D→nL 6S(nL=9D,11S,7F),5D态是由8S→7P→5D的辐射跃迁产生的.由以前测量过的6P 5D 6S 7D的转移速率系数以及6P态的原子密度,结合荧光强度比得到碰撞能量合并过程的速率系数,对于9D,11S和7F各态,其平均值分别为(6.4±3.2)×10-10,(1.0±0.5)×10-10和(8.4±4.2)×10-10 cm3·s-1.  相似文献   

8.
应用激光吸收和荧光方法,测量了Cs(6P)态与N2碰撞的精细结构转移和碰撞猝灭截面。Cs原子被激光激发到6P3/2态,将与泵浦激光束反向平行的检测激光束调到6PJ→8S1/2的跃迁,测量了6PJ激发态的密度及空间分布,由此计算了6PJ→6S的有效辐射率。在T=337 K(蒸气压公式给出Cs密度N0=1.25×1012cm-3)和N2密度2×1016相似文献   

9.
在样品池条件下,利用原子荧光光谱方法,测量了Cs(6DJ)与H2,He碰撞中的反应与非反应能量转移截面.利用脉冲激光886nm线双光子激发Cs(6S)到Cs(6D3/2)态,原子荧光中除含有6D3/2→6P的直接荧光外,还含有6D5/2→6P的转移荧光.利用三能级模型的速率方程分析,在不同的He和H2密度下,分别测垦直接荧光与转移荧光的时间积分荧光强度比,得到了6D3/2与H2和He碰撞的精细结构转移截面分别为σ=(55±13)×10-16和(16±4)×10-16 cm2,同时确定了6D5/2与H2和He的碰撞猝灭速率系数.6D5/2态与H2的碰撞猝灭速率系数比6D5/2与He的大,它是反应与非反应速率系数之和,利用实验数据确定非反应速率系数为6.3×10-10 cm3·s-1,得到6D5/2与H2的反应截面为(2.0±0.8)×10-16 cm2.利用不同H2(或He)密度下6D5/2→6P3/2时间积分荧光强度,得到6D3/2与H2反应截面为(4.0±1.6)×10-16 cm2,6D3/2与H2反应的活性大于6D5/2.  相似文献   

10.
在样品池条件下,利用激光诱导荧光方法研究了K2[11Σ+u(v′=2)]+He,H2→K2[11Σ+u(v′=1,3)]+He,H2的碰撞能量转移。池温保持在420 K,He和H2气压在40~250 Pa之间变化。脉冲激光激发K2基态至11Σ+u(v′=2)态,荧光中含有直接和碰撞转移荧光成分,记录直接11Σ+u(v′=2)→11Σ+g(v″=0)荧光发射的时间分辨强度。在发射开始时v′=2能级的布居未受v′=1,3→v′=2碰撞转移的影响,因此光强为一纯指数曲线,从强度的对数值给出的直线斜率得到有效寿命,由Stern-Volmer方程得到v′=2→v″=0的辐射寿命为(36±7)ns,v′=2与He和H2碰撞的总的转移截面分别为(3.0±0.5)×10-16cm2和(6.4±1.2)×10-15cm2。在不同的He和H2气压下,测量v′=1,2,3→v″=0的时间积分荧光强度,结合11Σ+u(v′=1,3)能量辐射率的测量,得到了v′=2→v′=1和v′=2→v′=3的碰撞转移面分别为(1.4±0.5)×10-16cm2,(1.2±0.4)×10-16cm2(对K2+He)和(3.2±1.0)×10-15cm2,(2.6±0.9)×10-15cm2(对K2+H2)。  相似文献   

11.
应用激光吸收和荧光方法,测量了Rb(5P)态与N2碰撞的精细结构混合和碰撞猝灭截面.Rb原子被激光激发到5P3/2态,将与泵浦激光束反向平行的检测激光束调到5PJ→7S1/2的跃迁,测量5PJ激发态的密度及空间分布,由此计算了5PJ→5S的有效辐射率,在T=340K和N2密度0.5×1016<N<4×1016cm-3范围内测量了5P1/2→5S1/2(794nm)发射的敏化荧光强度I794,量N/I794与N有抛物线型的关系,表明了5PJ的猝灭是由于与N2分子的碰撞产生的,而不是由与Rb基态原子碰撞产生的.由最小二乘法确定的二次多项式的系数得到5P态与N2碰撞精细结构混合截面σ3/2→1/2=(10.43±3.54)×10-16cm2,猝灭截面σD=(9.8±3.4)×10-16cm2.与在不同的实验条件下得到的结果在误差范围内一致.  相似文献   

12.
利用光学双共振和激光光谱技术,测量了K_2(~1A_g)态的预解离率和碰撞转移率.脉冲激光将K_2(1~1∑_g~+)基态激发至1~1∑_u~+态,由连续激光激发1~1∑_u~+至激高位~1A_g态.在不同K密度下,记录~1A_g→~1A_u跃迁的时间分辨荧光,光强的对数与衰变时间成线性关系,从直线的斜率得到~1A_g态的有效寿命,由Stern-Volmer方程得到~1A_g态的辐射率与预解离率之和及总的碰撞去布居截面.在不同的K密度下测量时间积分荧光强度I_3[K_2(~1A_g)→K_2(~1A_u)],I_2[K(6S)→K(4P_(3/2))]和I_1[K(4D)→K(4P_(3/2))],光强比I_1/I_3和I_2/I_3与K密度也成线性关系.从直线的斜率和截距并结合从Stern-Volmer方程得到的结果,确定K_3(~1A_g)的预解离率Γ_(P6S)=(1.2±0.4)×10~7s~(-1),Γ_(P4D)=(0.8±0.3)×10~7s~(-1)和碰撞转移截面σss=(1.9±0.6)×10~(-14)cm~2,σ_(4D)=(9.0±3.0)×10~(-15)cm~2.  相似文献   

13.
利用双光子吸收,将Na(3S)原子激发到4D态,测量了Na(4D)+Na(3S)Na(4F)+Na(3S)碰撞能量转移截面,因为直接由4F→3D的荧光不能探测,所以检测3D→3P级联荧光讯号。结合基态钠原子密度的测量,给出了截面值σ_4D→4F=1.3 x 10~(-14)±28%(cm~2)。  相似文献   

14.
二步激发Cs原子至8S态,测量了碰撞转移过程Cs(6P)+Cs(5D)→Cs(6S)+Cs(nL=9S,5F)的截面,测量由7D,9S和5F态发射的荧光强度,从荧光强度比和σ(7D)值得到了σ(9S)和σ(5F),而σ(7D)已经进行过绝对测量,截面值σ(9S)和σ(5F)分别为8.7×10-15和1.3×10-14?cm2.讨论了能量转移过程9S+6S5F+6S对σ(9S)和σ(5F)的影响.  相似文献   

15.
Rb蒸气中的5PJ+5PJ′→5S+5DJ″碰撞能量合并   总被引:1,自引:0,他引:1  
研究了Rb(5PJ) Rb(5PJ′)→Rb(5S) Rb(5DJ″)的碰撞能量合并过程,一台单模半导体激光器共振激发Rb原子的5P1/2或5P3/2态,另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁,由激发态原子密度和谱线荧光比得到碰撞能量合并过程5PJ 5PJ′→5S 5DJ″的截面.两台激光器同时分别激发5P1/2和5P3/2态,通过对5DJ″→5PJ的荧光探测,得到5P3/2 5P1/2碰撞转移到5D5/2和5D3/2的截面分别为(1.12±0.50)×10-14和(1.01±0.45)×10-14cm2.  相似文献   

16.
用激光二步激发Cs原子至8S态,从谱线的波长及强度可以确定Cs原子的辐射及碰撞过程,5D态主要是由8S→7P→5D跃迁布居的.在1016-1017Cs密度范围内,测量了碰撞能量合并5D 5D→nL 6S(nL=9D,11S,7F)速率系数,因5D→6P(3.0-3.6μm)处于红外本实验不能探测,利用一个已经测量过的过程(即6P 5D→6S 7D)作相对测量,对于9D,11S和7F态,其平均速率系数分别为(8.4±4.2)×10-10,(7.3±3.6)×10-10和(9.7±4.8)×10-10cm3s-1.讨论了碰撞转移过程11S 6S 7F 6S对速率系数的影响.  相似文献   

17.
利用激光诱导荧光方法研究了Cs_2B~1Π_u[(v′=5)]与N2的碰撞能量转移.脉冲激光激发Cs_2基态至B~1Π_u[(v′=5)]态,池温保持在410 K,N_2气压在1.5×10~2 Pa~2.5×10~3 Pa之间变化.荧光中含有直接荧光和碰撞转移荧光成分,记录直接荧光B~1Πu(v′=5)→Χ~1∑~+_g(v″=0)的时间分辨强度.从荧光强度的对数值给出的直线斜率得到B~1Π_u(v′=5)→Χ~1∑~+_g(v″=0)的有效寿命,由Stern-Volmer方程,得到B~1Π_u(v′=5)→Χ~1∑~+_g(v″=0)的辐射寿命为(45±9)ns.B~1Π_u(v′=5)态与N_2碰撞的猝灭总截面为(9.8±1.5)×10~(-15)cm~2.用类似的方法得到B~1Π_u(v′=4,6)能级的辐射寿命.在不同的N_2气压下,测量B~1Π_u(v′=5,4,6)→Χ~1∑~+_g(v″=0)的时间积分荧光强度,首次得到v′=5→v′=4及v′=5→v′=6的碰撞转移截面分别为(3.9±0.8)×10~(-15) cm~2和(4.1±0.8)×10~(-15)cm~2.  相似文献   

18.
利用激光诱导荧光方法研究了Cs_2B~1∏_u[(v′=5)]与N_2的碰撞能量转移.脉冲激光激发Cs_2基态至B~1∏_u[(v′=5)]态,池温保持在410K,N_2气压在1.5×10~2Pa~2.5×10~3Pa之间变化.荧光中含有直接荧光和碰撞转移荧光成分,记录直接荧光B~1∏_u(v′=5)→X~1∑_8~+(v″=0)的时间分辨强度.从荧光强度的对数值给出的直线斜率得到B~1∏_u(v′=5)→X~1∑_8~+(v″=0)的有效寿命,由Stern—Volmer方程,得到B~1∏_u(v′=5)→X~1∑_8~+(v″=0)的辐射寿命为(45±9)ns.B~1∏_u(v′=5)态与N_2碰撞的猝灭总截面为(9.8±1.5)×10~(-15)cm~2.用类似的方法得到B~1∏_u(v′=4,6)能级的辐射寿命.在不同的N_2气压下,测量B~1∏_u(v′=5,4,6)→X~1∑_8~+(v″=0)的时间积分荧光强度,首次得到v′=5→v′=4及v′=5→v′=6的碰撞转移截面分别为(3.9±0.8)×10~(-15)cm~2和(4.1±0.8)×10~(-15)cm~2.  相似文献   

19.
在Cs-H2混合系统中用激光将Cs原子激发到6P3/2能级,研究了CsH分子的形成机制.利用光学吸收法得到6P3/2态的密度及其空间分布,能量合并过程6P3/2+6P3/2→6D+6S1/2产生6D态原子;猝灭过程Cs(6P3/2)+H2(v=0)→Cs(6S1/2)+H2(v=2)产生H2(v=2)态.由6P3/2态原子密度及6D→6P3/2与6P3/2→6S1/2的荧光比得到碰撞能量合并速率系数,在不同的H2密度下,测量了转移荧光强度I895,得到了H2(2,J)态的产生速率系数kH2(2,J)=1.  相似文献   

20.
研究了Rb(5PJ) Rb(5PJ)→Rb(nlJ') Rb(5S)碰撞能量合并过程,利用单模半导体激光器分别共振激发Rb原子的5P1/2或5P3/2态,利用另一与泵浦激光束反向平行的单模激光束作为吸收线探测激发态原子密度及其空间分布,吸收线分别调至5P1/2→5D3/2和5P3/2→7S1/2跃迁.由激发态原子密度和谱线荧光比得到碰撞能量合并过程的截面,对5P3/2激发,碰撞转移得到5D5/2,5D3/2和7S1/2的截面分别是(1.32士0.59)×10-14,(1.18士0.53)×10-14和(3.21士1.44)×10-15cm2;对5P1/2激发,碰撞转移到5D5/2和5D3/2的截面分别是(6.57士2.96)×10-15和(5.90士2.66)×10-15cm2.与其他的实验结果进行了比较.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号