首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study investigated how 31 sixth-, seventh-, and eighth-grade middle school students who had not previously, nor were currently taking a formal Algebra course, approached word problems of an algebraic nature. Specifically, these algebraic word problems were of the form x + (x + a) + (x + b) = c or ax + bx + cx = d. An examination of students’ understanding of the relationships expressed in the problems and how they used this information to solve problems was conducted. Data included the students’ written responses to problems, field notes of researcher-student interactions while working on the problems, and follow-up interviews. Results showed that students had many informal strategies for solving the problems with systematic guess and check being the most common approach. Analysis of researcher-student interactions while working on the problems revealed ways in which students struggled to engage in the problems. Support mechanisms for students who struggle with these problems are suggested. Finally, implications are provided for drawing upon students’ informal and intuitive knowledge to support the development of algebraic thinking.  相似文献   

2.
This study is part of a large research and development project aimed at observing, describing and analyzing the learning processes of two seventh grade classes during a yearlong beginning algebra course in a computer intensive environment (CIE). The environment includes carefully designed algebra learning materials with a functional approach, and provides students with unconstrained freedom to use (or not use) computerized tools during the learning process at all times. This paper focuses on the qualitative and quantitative analyses of students’ work on one problem, which serves as a window through which we learn about the ways students worked on problems throughout the year. The analyses reveal the nature of students’ mathematical activity, and how such activity is related to both the instrumental views of the computerized tools that students develop and their freedom to use them. We describe and analyze the variety of approaches to symbolic generalizations, syntactic rules and equation solving and the many solution strategies pursued successfully by the students. On that basis, we discuss the strengths of the learning environment and the open questions and dilemmas it poses.  相似文献   

3.
The validity of students’ reasoning is central to problem solving. However, equally important are the operating premises from which students’ reason about problems. These premises are based on students’ interpretations of the problem information. This paper describes various premises that 11- and 12-year-old students derived from the information in a particular problem, and the way in which these premises formed part of their reasoning during a lesson. The teacher’s identification of differences in students’ premises for reasoning in this problem shifted the emphasis in a class discussion from the reconciliation of the various problem solutions and a focus on a sole correct reasoning path, to the identification of the students’ premises and the appropriateness of their various reasoning paths. Problem information that can be interpreted ambiguously creates rich mathematical opportunities because students are required to articulate their assumptions, and, thereby identify the origin of their reasoning, and to evaluate the assumptions and reasoning of their peers.  相似文献   

4.
5.
This paper reports two studies that examined the impact of early algebra learning and teachers’ beliefs on U.S. and Chinese students’ thinking. The first study examined the extent to which U.S. and Chinese students’ selection of solution strategies and representations is related to their opportunity to learn algebra. The second study examined the impact of teachers’ beliefs on their students’ thinking through analyzing U.S. and Chinese teachers’ scoring of student responses. The results of the first study showed that, for the U.S. sample, students who have formally learned algebraic concepts are as likely to use visual representations as those who have not formally learned algebraic concepts in their problem solving. For the Chinese sample, students rarely used visual representations whether or not they had formally learned algebraic concepts. The findings of the second study clearly showed that U.S. and Chinese teachers view students’ responses involving concrete strategies and visual representations differently. Moreover, although both U.S. and Chinese teachers value responses involving more generalized strategies and symbolic representations equally high, Chinese teachers expect 6th graders to use the generalized strategies to solve problems while U.S. teachers do not. The research reported in this paper contributed to our understanding of the differences between U.S. and Chinese students’ mathematical thinking. This research also established the feasibility of using teachers’ scoring of student responses as an alternative and effective way of examining teachers’ beliefs.  相似文献   

6.
We report a case study that explored how three college students mentally represented the knowledge they held of inferential statistics, how this knowledge was connected, and how it was applied in two problem solving situations. A concept map task and two problem categorization tasks were used along with interviews to gather the data. We found that the students’ representations were based on incomplete statistical understanding. Although they grasped various concepts and inferential tests, the students rarely linked key concepts together or to tests nor did they accurately apply that knowledge to categorize word problems. We suggest that one reason the students had difficulty applying their knowledge is that it was not sufficiently integrated. In addition, we found that varying the instruction for the categorization task elicited different mental representations. One instruction was particularly effective in revealing students’ partial understandings. This finding suggests that modifying the task format as we have done could be a useful diagnostic tool.  相似文献   

7.
This paper presents the second phase of a larger research program with the purpose of exploring the possible consequences of a gap between what is done in the classroom regarding mathematical word problem solving and what research shows to be effective in this particular field of study. Data from the first phase of our study on teachers’ self-proclaimed practices showed that one-third of elementary teachers from the region of Quebec require their students to follow a specific sequential problem-solving method, known as the ‘what I know, what I look for’ method. These results led us to hypothesize that the observed gap may have an impact on students’ comprehension of mathematical word problems. The use of this particular method was the foundation for us to study, in the second phase, the effect of the imposition of this sequential method on students’ literal and inferential understanding of word problems. A total of 278 fourth graders (9–10 years old) solved mathematical word problems followed by a test to assess their understanding of the word problems they had just solved. The results suggest that the use of this problem solving method does not seem to improve or impair students’ understanding. From a more fundamental point of view, our study led us to the conclusion that the way word problem solving is addressed in the mathematics classroom, through sequential and inflexible methods, does not help students develop their word problem solving competence.  相似文献   

8.
In this article, we propose a backward group preserving scheme (BGPS) on the advection‐dispersion equation (ADE) for tackling of the contamination problems. The BGPS has been successfully applied on the backward heat conduction problems as well as the backward in time Burgers equation, but it has never been applied to solve the ADE. The BGPS is able to recover the spatial distribution of groundwater contaminant concentration in this work. Several numerical examples are worked out, and we show, based on those numerical examples, that the BGPS is applicable to the ADE and the method can also handle the ADE with piecewise constant dispersion coefficients. When a steep gradient is appeared in the solution, several steps of the BGPS can be used to retrieve the desired initial data and its result is better than the marching‐jury backward beam equation (MJBBE) method as far as our examples are concerned. © 2008 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

9.
在二阶线性齐次微分方程边值问题相似构造解式的基础上,首先利用相似构造法求解Bessel方程和变型的Bessel方程边值问题的解,然后建立了均质油藏的渗流规律的数学模型,再将均质油藏的渗流数学模型转换成变型的Bessel方程的边值问题,利用二阶线性齐次微分方程边值问题的相似构造法求解均质储层渗流的数学模型.最后通过Matlab编程进行图版分析,展示实例的函数解.这将极大地方便试进分析软件的编制,也提高了石油工作者的效率.  相似文献   

10.
In considering mathematics problem solving as a model-eliciting activity ( [Lesh and Doerr, 2003], [Lesh and Harel, 2003] and [Lesh and Zawojewski, 2008]), it is important to know what students are modeling for the problems: situations or solutions. This study investigated Grade 3 students’ mathematization process by examining how they modeled different types of multi-digit subtraction situation problems. Students’ modeling processes differed from one problem type to another due to their prior experiences and the complexity of the problems. This study showed that students make their own distinctions between solution and situation models in their mathematization process. Mathematics curricula and teaching should consider these distinctions to carefully facilitate different model development of and support student understanding of a content topic.  相似文献   

11.
In this paper, the homotopy analysis method (HAM) is employed to solve the linear optimal control problems (OCPs), which have a quadratic performance index. The study examines the application of the homotopy analysis method in obtaining the solution of equations that have previously been obtained using the Pontryagin’s maximum principle (PMP). The HAM approach is also applied in obtaining the solution of the matrix Riccati equation. Numerical results are presented for several test examples involving scalar and 2nd-order systems to demonstrate the applicability and efficiency of the method.  相似文献   

12.
This study investigates Chinese and U.S. teachers’ construction and use of pedagogical representations surrounding implementation of mathematical tasks. It does this by analyzing video-taped lessons from the Learner's Perspective Study, involving 15 Chinese and 10 U.S. consecutive lessons on the topic of linear equations/linear relations. We examined patterns of pedagogical representations that Chinese and U.S. teachers construct over a set of consecutive lessons, but also investigated the strategies of using representations to solve mathematical problems by Chinese and U.S. teachers. It was found that multiple representations were constructed simultaneously to develop the connection of relevant concepts in the U.S. classrooms while selective representations were constructed to develop relevant concepts in the Chinese classrooms. This study is significant because it contributes to our understanding of the cultural differences involving Chinese and U.S. students’ mathematical thinking and has practical implications for constructing pedagogical representations to maximize students’ learning.  相似文献   

13.
My master thesis concerns the solution linear complementarity problems (LCP). The Lemke algorithm, the most commonly used algorithm for solving a LCP until this day, was compared with the piecewise Newton method (PLN algorithm). The piecewise Newton method is an algorithm to solve a piecewise linear system on the basis of damped Newton methods. The linear complementarity problem is formulated as a piecewise linear system for the applicability of the PLN algorithm. Then, different application examples will be presented, solved with the PLN algorithm. As a result of the findings (of my master thesis) it can be assumed that – under the condition of coherent orientation – the PLN-algorithm requires fewer iterations to solve a linear complementarity problem than the Lemke algorithm. The coherent orientation for piecewise linear problems corresponds for linear complementarity problems to the P-matrix-property. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
Adaptive text mining: inferring structure from sequences   总被引:1,自引:0,他引:1  
Text mining is about inferring structure from sequences representing natural language text, and may be defined as the process of analyzing text to extract information that is useful for particular purposes. Although hand-crafted heuristics are a common practical approach for extracting information from text, a general, and generalizable, approach requires adaptive techniques. This paper studies the way in which the adaptive techniques used in text compression can be applied to text mining. It develops several examples: extraction of hierarchical phrase structures from text, identification of keyphrases in documents, locating proper names and quantities of interest in a piece of text, text categorization, word segmentation, acronym extraction, and structure recognition. We conclude that compression forms a sound unifying principle that allows many text mining problems to be tacked adaptively.  相似文献   

15.
The paper introduces an exploratory framework for handling the complexity of students’ mathematical problem posing in small groups. The framework integrates four facets known from past research: task organization, students’ knowledge base, problem-posing heuristics and schemes, and group dynamics and interactions. In addition, it contains a new facet, individual considerations of aptness, which accounts for the posers’ comprehensions of implicit requirements of a problem-posing task and reflects their assumptions about the relative importance of these requirements. The framework is first argued theoretically. The framework at work is illustrated by its application to a situation, in which two groups of high-school students with similar background were given the same problem-posing task, but acted very differently. The novelty and usefulness of the framework is attributed to its three main features: it supports fine-grained analysis of directly observed problem-posing processes, it has a confluence nature, it attempts to account for hidden mechanisms involved in students’ decision making while posing problems.  相似文献   

16.
In this paper, we present a new numerical scheme, based on the finite difference method, to solve American put option pricing problems. Upon applying a Landau transform or the so-called front-fixing technique [19] to the Black-Scholes partial differential equation, a predictor-corrector finite difference scheme is proposed to numerically solve the nonlinear differential system. Through the comparison with Zhu’s analytical solution [35], we shall demonstrate that the numerical results obtained from the new scheme converge well to the exact optimal exercise boundary and option values. The results of our numerical examples suggest that this approach can be used as an accurate and efficient method even for pricing other types of financial derivative with American-style exercise.  相似文献   

17.
Language plays an important role in word problem solving. Accordingly, the language in which a word problem is presented could affect its solution process. In particular, East-Asian, non-alphabetic languages are assumed to provide specific benefits for mathematics compared to Indo-European, alphabetic languages. By analyzing students’ eye movements in a cross-linguistic comparative study, we analyzed word problem solving processes in Chinese and German. 72 German and 67 Taiwanese undergraduate students solved PISA word problems in their own language. Results showed differences in eye movements of students, between the two languages. Moreover, independent cluster analyses revealed three clusters of reading patterns based on eye movements in both languages. Corresponding reading patterns emerged in both languages that were similarly and significantly associated with performance and motivational-affective variables. They explained more variance among students in these variables than between the languages alone. Our analyses show that eye movements of students during reading differ between the two languages, but very similar reading patterns exist in both languages. This result supports the assumption that the language alone is not a sufficient explanation for differences in students’ mathematical achievement, but that reading patterns are more strongly related to performance.  相似文献   

18.
The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students’ mathematical problem solving. To better understand these interactions, we analyzed eighth grade students’ problem solving as they used a java applet designed to specifically accompany a well-structured problem. Within a problem solving session, students’ goal-directed activity was used to achieve different types of goals: analysis, planning, implementation, assessment, verification, and organization. As we examined students’ goals, we coded instances where their use of a technology feature was supportive or not supportive in helping them meet their goal. We categorized features of this applet into four subcategories: (1) features over which a user does not have any control and remain static, (2) dynamic features that allow users to directly manipulate objects, (3) dynamic features that update to provide feedback to users during problem solving, and (4) features that activate parts of the applet. Overall, most features were found to be supportive of students’ problem solving, and patterns in the type of features used to support various problem solving goals were identified.  相似文献   

19.
Research on teaching high school mathematics shows that the topic of percentages often causes learning difficulties. This article describes a method of teaching percentages that the authors used in university bridging courses. In this method, the information from a word problem about percentages is presented in a two-way table. Such a table gives a logical structure to the problem and provides an algorithm for finding a simple equation for the unknown value of interest. The use of this procedure is illustrated by several examples of different levels of difficulty. The method can be applied to many types of percentage problems, so it is quite universal.  相似文献   

20.
In this paper we compare how three teachers, one from each of Finland, Flanders and Hungary, introduce linear equations to grade 8 students. Five successive lessons were videotaped and analysed qualitatively to determine how teachers, each of whom was defined against local criteria as effective, addressed various literature-derived equations-related problems. The analyses showed all four sequences passing through four phases that we have called definition, activation, exposition and consolidation. However, within each phase were similarities and differences. For example, all three constructed their exposition around algebraic equations and, in so doing, addressed concerns relating to students’ procedural perspectives on the equals sign. All three teachers invoked the balance as an embodiment for teaching solution strategies to algebraic equations, confident that the failure of intuitive strategies necessitated a didactical intervention. Major differences lay in the extent to which the balance was sustained and teachers’ variable use of realistic word problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号