首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of core-links Al(13) (C-Al(13)) and flat-Al(13) (F-Al(13)) complexes in aqueous solution have been investigated using density functional theory (DFT) at the level of B3LYP/6-31G(d). The present work focuses on the following three aspects: (1) C-Al(13)(9+) was optimized with the consideration of solvent effect and the (27)Al NMR chemical shifts using Hartree Fock GIAO and B3LYP GIAO methods were computed respectively; (2) the optimization of F-Al(13)(15+) was also performed and the (27)Al NMR chemical shifts were obtained using the same methods as above; (3) the structural parameters of a series of typical aluminum species (Al(3+), AlOH(2+), AlF(2+), Al(2)(4+), Al(6)(6+), K-Al(13)(7+), C-Al(13)(9+) and F-Al(13)(15+)) were compared.  相似文献   

2.
The synthesis and isolation of 12 alpha-aryl, beta, beta'-disilyl-substituted vinyl cations 1b-l, 7, and 8 with the tetrakis(pentafluorophenyl)borate counteranion is reported. The vinyl cations are characterized by NMR spectroscopy and are identified by their specific NMR chemical shifts (delta13C(C(+)) = 178.1-194.5; delta13C (Cbeta) = 83.3-89.9; delta13C (Cipso)) = 113.6-115.2; delta (29)Si = 25.0-12.0), supported by density functional calculations at the B3LYP/6-311G(2d,p)//B3LYP/6-31G(d) level. All cations are found to be stable at room temperature in solution and in the solid state. The NMR chemical shifts as well as J-coupling data indicate for vinyl cations, 1b-l, 7, and 8, the occurrence of substantial stabilization through pi-resonance via the aryl substituents and through sigma-delocalization via the beta-silyl groups. For vinyl cation 8, the free enthalpy of stabilization via pi-resonance by the alpha-ferrocenyl substituent is determined by temperature-dependent (29)Si NMR spectroscopy to be DeltaG++ = (48.9 +/- 4.2) kJ mol(-1). A Hammett-type analysis, which relates the (1)J(SiC(beta)) coupling constant and the low-field shift of the (29)Si NMR signal upon ionization, Deltadelta (29)Si, with the electron-donating ability of the aryl group, indicates an inverse relation between the extent of Si-C hyperconjugation and pi-donation. The computed structures (at B3LYP/6-31G(d)) of the vinyl cations 1a-l, 7, and 8 reveal the consequences of Si-C hyperconjugation and of pi-resonance interactions with the aryl groups. The structures, however, fail to express the interplay between sigma-delocalization and pi-conjugation in that the calculated Si-C bond lengths and the C+-C(ipso) bond lengths do not vary as a function of the substituent.  相似文献   

3.
The B3LYP/6-31+G(d) molecular geometry optimized structures of 17 five-membered heterocycles were employed together with the gauge including atomic orbitals (GIAO) density functional theory (DFT) method at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311+G(2d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants. The method of geometry optimization for pyrrole (1), N-methylpyrrole (2) and thiophene (7) using the larger 6-311++G(d,p) basis sets at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,p) and B3LYP/cc-pVTZ levels of theory gave little difference between calculated and experimental values of coupling constants. In general, the (1)H and 13C chemical shifts for all compounds are in good agreement with theoretical calculations using the smaller 6-31 basis set. The values of nJHH(n=3, 4, 5) and rmnJ(CH)(n=1, 2, 3, 4) were predicted well using the larger 6-31+G(d,p) and 6-311++G(d,p) basis sets and at the B3LYP/6-31+G(d,p), B3LYP/6-311++G(d,p), B3LYP/6-31+G(2d,2p) levels of theory. The computed atomic charges [Mülliken; Natural Bond Orbital Analysis (NBO); Merz-Kollman (MK); CHELP and CHELPG] for the B3LYP/6-311++G(d,p) geometry optimized structures of 1-17 were used to explore correlations with the experimental proton and carbon chemical shifts.  相似文献   

4.
The GIAO (Gauge Including Atomic Orbitals) DFT (Density Functional Theory) method is applied at the B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311++G(d,p)//B3LYP/6-31+G(d), B3LYP/6-311+G (2d,p)//B3LYP/6-31+G(d) and B3LYP/6-311++G(d,p)//B3LYP/6-311++G(d,p) levels of theory for the calculation of proton and carbon chemicals shifts and coupling constants for 25 nitro-substituted five-membered heterocycles. Difference (1D NOE) spectra in combination with long-range gHMBC experiments were used as tools for the structural elucidation of nitro-substituted five-membered heterocycles. The assigned NMR data (chemical shifts and coupling constants) for all compounds were found to be in good agreement with theoretical calculations using the GIAO DFT method. The magnitudes of one-bond (1JCH) and long-range (nJCH, n>1) coupling constants were utilized for unambiguous differentiation between regioisomers of nitro-substituted five-membered heterocycles.  相似文献   

5.
After the geometry optimization at B3LYP/6-31+G(d,p) level,the NMR calcula-tions of a series of fluorenone analogues have been carried out by GIAO method at HF/6-31+G(d) level and B3LYP/6-311G+(2d,p) level,respectively.The 13C NMR chemical shifts calculated at HF/6-31+G(d) level show better agreement with the observed values.By a series of linear correction equations (δpred=a + bδcalc),accurate prediction of 13C chemical shifts was achieved for the new fluorenone compound.The linear correlation of δpred with δexptl is excellent,and the square of correlation coefficient,r2,is up to 0.994.The maximum absolute difference between δpred and δexptl,Δδ,is 4.6 ppm,and the root-mean-square error between δpred and δexptl is only 2.6 ppm.  相似文献   

6.
Formation of alpha-phenyl-beta-halovinyl cation, beta-phenyl-alpha-halovinyl cation, as well as the halogen-bridged and the spirocyclic phenyl-bridged cations as intermediates of protonation of phenylethynyl halides or by halogen addition to phenylethynes was evaluated by DFT at B3LYP/6-31+G(d) and, for comparison in representative cases, by B3LYP/6-311++G(d,p). Relative stabilities of the resulting minima were gauged as a function of substituents on the phenyl group with p-OH, p-OMe, p-H, p-CF3, p-CN, and p-NO2 and with p-OMeH+, p-NO2H+, and p-N2+. In the majority of cases, the alpha-aryl-beta-halovinyl cations were identified as the most likely intermediates, irrespective of X and for most R groups. For R = p-N2+ (with X = Br and Cl), R = CNH+ (with X = Cl), and R = MeOH+ (with X = Br), the corresponding beta-aryl-alpha-halovinyl cations become more stable than alpha-aryl-beta-halovinyl cations (but in most cases with a relatively small stability difference). Whereas competitive formation of the spirocyclic aryl bridged cations via this route appears remote, with R = N2+ and R = NO2H+ as substituents (with X = Br), cyclic halonium ions could intervene, since their relative stabilities are within approximately 4 kcal/mol of the lowest energy vinyl cations. Geometrical features, GIAO NMR chemical shifts, and NPA-derived charges were used to gain insight into the structural/electronic features in the resulting mono and dications. The study provides a basis for stable ion and solvolytic/kinetic studies on a series of substituted phenylethynyl halides that are being synthesized.  相似文献   

7.
Mono- and diprotonated carbocations and the two-electron oxidation dications derived from parent pyrene and its nonalternant isomers "azupyrene"(dicyclopenta[ef,kl]heptalene)(DCPH) and dicyclohepta[ed,gh]pentalene (DCHP) were studied by DFT at the B3LYP/6-31G(d) level. The most likely site(s) for mono- and diprotonation were determined based on relative arenium ion energies and the structures of the energetically most favored carbocations were determined by geometry optimization. The NMR chemical shifts for the protonated mono- and dications and the oxidation dications were computed by GIAO-NMR at the B3LYP/6-31G(d)//B3LYP/6-31G(d) level and their charge delocalization paths were deduced based on magnitude of the computed [capital Delta][small delta](13)C values and the NPA-derived changes in charges. Relative aromaticity/antiaromaticity in various rings in the energetically favored mono- and dications was estimated via NICS and [capital Delta]NICS. Calculated NMR chemical shift data for and were compared with the available experimental NMR values. The available data on chemical and physical properties of DCPH and DCHP are extremely limited and biological activity data are non-existent. The present study provides the first glance into their carbocations and oxidation dications, while augmenting and reinforcing the previous stable ion data on the pyrenium cations.  相似文献   

8.
Full (1)H and (13)C NMR chemical shift assignments were made for two sets of penam beta-lactams: namely, the diastereomeric (2S, 5S, 6S)-, (2S, 5R, 6R)-, (2S, 5S, 6R)-, and (2S, 5R, 6S)-methyl 6-(1,3-dioxoisoindolin-2-yl)-3,3-dimethyl-7-oxo-4-thia-1-aza-bicyclo[3.2.0]heptane-2-carboxylates (1-4) and (2S, 5R, 6R)-, (2S, 5S, 6R)-, and (2S, 5R, 6S)-6-(1,3-dioxoisoindolin-2-yl)-3,3-dimethyl-7-oxo-4-thia-1-aza-bicyclo[3.2.0]heptane-2-carboxylic acids (6-8). Each penam was then modeled as a family of conformers obtained from Monte Carlo searches using the AMBER* force field followed by IEFPCM/B3LYP/6-31G(d) geometry optimization of each conformer using chloroform solvation. (1)H and (13)C chemical shifts for each conformer were computed at the WP04, WC04, B3LYP, and PBE1 density functional levels as Boltzmann averages of IEFPCM/B3LYP/6-311 + G(2d,p) energies over each family. Comparisons between experimental and theoretical chemical shift data were made using the total absolute error (|Deltadelta| (T)) criterion. For the (1)H shift data, all methods were sufficiently accurate to identify the proper stereoisomers. Computed (13)C shifts were not always successful in identifying the correct stereoisomer, regardless of which DFT method was used. The relative ability of each theoretical approach to discriminate among stereoisomers on the basis of proton shifts was also evaluated.  相似文献   

9.
[reaction: see text] Neutral homoaromaticity has been evaluated in heterocyclic systems related to the bicyclo[3.2.1]octane skeleton with replacement of CH(2) at C-2 in bicyclo[3.2.1]octa-3,6-diene with X = BH, AlH, Be, Mg, O, S, PH, NH (12); replacement of CH at C-3 in bicyclo[3.2.1]octa-3,6-dien-2-yl anion with PH, S, NH, O (13); and replacement at C-2 and C-3 with N and O (14). Stabilization energies (SE) are evaluated using density functional theory and homodesmotic equations at the B3LYP/6-311+G(3df,2p)//B3LYP/6-31G(d) level for series 12-14. Stabilization energies are compared with diamagnetic susceptibility exaltations, Lambda, CSGT-B3LYP/6-31G(d)//B3LYP/6-31G(d), and nucleus-independent chemical shifts (NICS), GIAO-B3LYP/6-311+G(2d,p)//B3LYP/6-31G(d). Analysis of frontier orbitals and geometries, B3LYP/6-31G(d)//B3LYP/6-31G(d), and proton affinities of 2-azabicyclo[3.2.1]octa-3,6-diene, pyrrole, and related model systems, B3LYP/6-311+G(2d,2p)//B3LYP/6-31G(d), provide complementary evidence supporting the division of the substrates evaluated into antihomoaromatic (12, X = BH, AlH, and Be), nonhomoaromatic (12, X = O, S, NH, PH), and homoaromatic (13, X = S, PH, NH, O and 14 X = ON), with 12 (X = Mg) appearing as transitional between anti- and nonhomoaromatic.  相似文献   

10.
The geometries and energetics of complexes of Li(+), Na(+), K(+), Be(2+), Mg(2+), and Ca(2+)metal cations with different possible uric acid anions (urate) were studied. The complexes were optimized at the B3LYP level and the 6-311++G(d,p) basis set. Complexes of urate with Mg(2+), and Ca(2+)metal cations were also optimized at the MP2/6-31+G(d) level. Single point energy calculations were performed at the MP2/6-311++G(d,p) level. The interactions of the metal cations at different nucleophilic sites of various possible urate were considered. It was revealed that metal cations would interact with urate in a bi-coordinate manner. In the gas phase, the most preferred position for the interaction of Li(+), Na(+), and K(+) cations is between the N(3) and O(2) sites, while all divalent cations Be(2+), Mg(2+), and Ca(2+) prefer binding between the N(7) and O(6) sites of the corresponding urate. The influence of aqueous solvent on the relative stability of different complexes has been examined using the Tomasi's polarized continuum model. The basis set superposition error (BSSE) corrected interaction energy was also computed for complexes. The AIM theory has been applied to analyze the properties of the bond critical points (electron densities and their Laplacians) involved in the coordination between urate and the metal cations. It was revealed that aqueous solvation would have significant effect on the relative stability of complexes obtained by the interaction of urate with Mg(2+) and Ca(2+)cations. Consequently, several complexes were found to exist in the water solution. The effect of metal cations on different NH and CO stretching vibrational modes of uric acid has also been discussed.  相似文献   

11.
A series of E- and Z-1-aryl-5-trimethylsilyl-3-buten-1-yl trifluoroacetates were solvolyzed in CD3CO2D, and rates of reaction as well as products derived from these reactions were determined. Hammett plots showed a break, which was indicative of a mechanistic change from a kC process when the most electron-donating substituents were attached to the aryl group to a kDelta process involving formation of cyclized beta-silyl carbocation intermediates for electron-withdrawing groups. In the case of p-CH3O substitution (a kC extreme), the cationic intermediate captures solvent (95%) or loses a proton (5%). In the case of m-CF3 substitution (a kDelta extreme), the beta-silyl cation intermediate desilylates to give vinylcyclopropane products. Substituents with intermediate electronic properties give more complex product mixtures. Solvolysis of pure Z-trifluoroacetate (p-CH3) gives small amounts of E-trifluoroacetate (p-CH3) along with the E-substitution product. This isomerization suggests that the cyclized beta-silyl cation can isomerize and then reopen to a classical aryl-stabilized cation. By way of contrast, B3LYP/6-31G* computational studies show only cyclized beta-silyl cations as energy minima. Open kC cations are higher-energy nonminimum energy structures.  相似文献   

12.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

13.
Chemical shifts of some reduced symmetry peripheral fused-ring-substituted phthalocyanines, namely Zn3B1N, Zncis2B2N, Zntrans2B2N, Zn1B3N and Zn3B0N, have been calculated at density functional B3LYP level using the gauge-independent atomic orbital (GIAO) method. The geometries were optimized using the 6-31G(d) basis set and the following NMR calculations were performed using 6-31G(d) and 6-311G(d,p) basis sets, respectively. The calculated NMR shielding tensors and chemical shifts are compared with previous experimental results. The chemical shifts are assigned according to the calculated data and satisfying results are obtained. The NMR shielding tensor simulation of Zn3B0N has been raised as a significant theoretical topic.  相似文献   

14.
在研究闭式多面体(HAlNH)12簇合物几何构型及稳定性的基础上, 用DFT的B3LYP方法在6-31G(d)的水平上, 对其内含式复合物X@(HAlNH)12 (X= Be, Mg, Ca, Zn, Al+, Ga+)进行了构型优化和能量计算, 并讨论了稳定结构的几何构型、自然键轨道(NBO)、振动频率、能量参数及NMR数据与结构的关系. 用Gaussian 03的QST3方法确定了客体X通过笼面6-元环的迁移过渡态(TS)结构, 并用IRC方法对所得TS结构进行了验证. 最后得到内含式复合物X@(HAlNH)12结构在热力学和动力学上的稳定性信息, 其中复合物Ga+@(HAlNH)12的结构相对最稳定.  相似文献   

15.
2-丁基-四氢噻吩亚砜13C-NMR的理论研究   总被引:5,自引:0,他引:5  
在RHF/6-31G和B3LYP/6-31G水平上对顺式(Cis-)与反式(Trans-)2-丁基-四氢噻吩亚砜(BTHTO)进行几何优化,应用规范不变原子轨道法(GIAO)在6-31G、6-31+G、6-31++G和6-31+G(2d,p)水平上计算了Cis-和Trans-BTHTO的13C-NMR,对13C-NMR谱进行了归属。结果表明,BTHTO噻吩五元环的稳定构象呈半椅式,Cis-和Trans-BTHTO中与硫原子直接碳原子13C-NMR的显著差异主要是由于空间构型不同引起分子的静电势场对相应碳原子的屏蔽作用不同所致。  相似文献   

16.
Potentially trishomoaromatic cations possessing the 6-X-bicyclo[3.1.0]hex-3-yl (X = CH(2), BH, NH, O) or bicyclo[3.2.0]hept-3-yl unit have been investigated at the Hartree-Fock, second-order, third-order, and fourth-order (single, double, quadruple excitations) M?ller-Plesset perturbation level employing the 6-31G(d) basis set. IGLO/6-31G(d) chemical shift calculations have been carried out at optimized geometries. Through-space interactions between the symmetric Walsh orbital of the three-membered ring and ppi(C3) orbital have been analyzed as a function of orbital energies and orbital overlap. The best indicators for trishomoaromaticity are NMR chemical shifts and magnetic susceptibility. There is a simple relationship between the conformation of the trishomocyclopropenylium cation, its charge distribution, and delta(13)C3, which can be used to determine the conformation or the C1C3 interaction distance from NMR measurements. Trishomocyclopropylium cations investigated can rearrange to an envelope form of higher energy where the height of the inversion barrier and the chair-envelope energy difference are a measure for the homoaromatic stabilization energy. The bicyclo[3.1.0]hex-3-yl cation in its envelope form can rearrange with a barrier of just 1 kcal/mol to the bicyclo[3.1.0]hept-2-yl cation. In the case of the bicyclo[3.2.0]hept-3-yl cation, there exists just the envelope form, which can rearrange to a ethano-bridged center-protonated spirocyclopentyl cation. The later cation should be an interesting target of chemical synthesis since it contains a pentacoordinated carbon atom and possesses unusual properties.  相似文献   

17.
The parent allenediazonium monocation H2C[double bond]C[double bond]CH(N2+) and ten of its substituted derivatives XYC[double bond]C[double bond]C(Z)N2+ (with F, CF3, Me, OMe, and Me2N as substituents) were studied by DFT at the B3LYP/6-31++G** level. Except for the Me2N-substituted derivative that forms a monocation-N2 complex, structurally intact allenediazonium ions were obtained as minima in all cases. Protonation studies at various sites were performed on allenediazonium cations, and relative energies of the resulting minima were used to identify the energetically most favored dications. In the majority of cases, protonation at the central carbon of the allenic moiety (C2) is most favored, forming delocalized allyl cation-N2+ species. The same dication structure is formed via initial C3-protonation, followed by a formal hydride shift, in cases where a carbocation-stabilizing group is placed at C3. When a CF3 group is placed at C3, initial protonation at C1 resulted in a 1,3-fluorine shift, to generate a fluoroallyl cation linked to a CH2N2+ moiety. Structural features in the allenediazonium monocations and their protonated dications were examined, taking into account their geometrical features, computed charges, and the GIAO NMR shifts.  相似文献   

18.
The 1H and 13C NMR chemical shifts of cis- and trans-protopinium salts were measured and calculated. The calculations of the chemical shifts consisted of conformational analysis, geometry optimization (RHF/6-31G** method) and shielding constants calculations (B3LYP/6-31G** method). Based on the results of the quantum chemical calculations, two sets of experimental chemical shifts were assigned to the particular isomers. According to the experimental results, the trans-isomer is more stable and its population is approximately 68%.  相似文献   

19.
Different lipase enzymes have been tested in order to perform regioselective acetylations on the eudesmane tetrol from vulgarin. High yields (95%) of 1,12-diacetoxy derivative (4) were achieved in 1 h with Candida antarctica lipase (CAL). However, only the 12-acetyl derivative (6) was obtained in similar yield with Mucor miehei (MML) or Candida cylindracea (CCL) lipases. The enzymatic protection at C-1 and C-12 has been used to form eudesmane cyclic-sulfites between C-6 and C-4 atoms. The R/S-sulfur configuration has been assigned by means of the experimental and theoretical (13)C and (1)H NMR chemical shifts. The theoretical shifts were calculated using the GIAO method, with a MM+ geometry optimization followed by a single-point calculation at the B3LYP/6-31G(*) level (B3LYP/6-31G(*)//MM+). Moreover, B3LYP/6-31G(*) geometry optimizations were carried out to test the B3LYP/6-31G(*)//MM+ results, for the deacetylated sulfites (12 and 15). In addition to the delta(C) and delta(H) shifts, the (3)J(HH) coupling constants were also calculated and compared with the experimental values when available. Finally, different reactivities have been checked in both sulfites by biotransformation with Rhizopus nigricans. While the R-sulfite gave 2 alpha- and 11 beta-hydroxylated metabolites, the S-sulfite yielded only regioselective deacetylations. Furthermore, both sulfites showed different reactivities in redox processes.  相似文献   

20.
1H, 13C, and 15N NMR studies of platinide(II) (M=Pd, Pt) chloride complexes with quinolines (L=quinoline-quin, or isoquinoline-isoquin; LL=2,2'-biquinoline-bquin), having the general formulae trans-/cis-[ML2Cl2] and [M(LL)Cl2], were performed and the respective chemical shifts (delta1H, delta13C, delta15N) reported. 1H coordination shifts of various signs and magnitudes (Delta1Hcoord=delta1Hcomplex-delta1Hligand) are discussed in relation to the changes of diamagnetic contribution to the relevant 1H shielding constants. The comparison to the literature data for similar complexes containing auxiliary ligands other than chlorides exhibited a large dependence of delta1H parameters on electron density variations and ring-current effects (inductive and anisotropic phenomena). The influence of deviations from planarity, concerning either MN2Cl2 chromophores or azine ring systems, revealed by the known X-ray structures of [Pd(bquin)Cl2] and [Pt(bquin)Cl2], is discussed in respect to 1H NMR spectra. 15N coordination shifts (Delta15Ncoord=delta15Ncomplex-delta15Nligand) of ca. 78-100 ppm (to lower frequency) are attributed mainly to the decrease of the absolute value of paramagnetic contribution in the relevant 15N shielding constants, this phenomenon being noticeably dependent on the type of a platinide metal and coordination sphere geometry. The absolute magnitude of Delta15Ncoord parameter increased by ca 15 ppm upon Pd(II)-->Pt(II) replacement but decreased by ca. 15 ppm following trans-->cis transition. Experimental 1H, 13C, 15N NMR chemical shifts are compared to those quantum-chemically calculated by B3LYP/LanL2DZ+6-31G**//B3LYP/LanL2DZ+6-31G*, both in vacuo and in CHCl3 or DMF solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号