首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The classical n-variable Kloosterman sums over the finite field F p give rise to a lisse -sheaf Kl n+1 on , which we call the Kloosterman sheaf. Let L p (G m, F p , Sym k Kl n+1, s) be the L-function of the k-fold symmetric product of Kl n+1. We construct an explicit virtual scheme X of finite type over Spec Z such that the p-Euler factor of the zeta function of X coincides with L p (G m, F p , Sym k Kl n+1, s). We also prove similar results for and . The research of L. Fu is supported by the NSFC (10525107).  相似文献   

2.
Let B\cal B be a p-block of cyclic defect of a Hecke order over the complete ring \Bbb Z[q] áq-1,p ?\Bbb {Z}[q] _{\langle q-1,p \rangle}; i.e. modulo áq-1 ?\langle q-1 \rangle it is a p-block B of cyclic defect of the underlying Coxeter group G. Then B\cal B is a tree order over \Bbb Z[q]áq-1, p ?\Bbb {Z}[q]_{\langle q-1, p \rangle } to the Brauer tree of B. Moreover, in case B\cal B is the principal block of the Hecke order of the symmetric group S(p) on p elements, then B\cal B can be described explicitly. In this case a complete set of non-isomorphic indecomposable Cohen-Macaulay B\cal B-modules is given.  相似文献   

3.
Given a group G of order p 1 p 2, where p 1, p 2 are primes, and \mathbbFq\mathbb{F}_{q}, a finite field of order q coprime to p 1 p 2, the object of this paper is to compute a complete set of primitive central idempotents of the semisimple group algebra \mathbbFq[G]\mathbb{F}_{q}[G]. As a consequence, we obtain the structure of \mathbbFq[G]\mathbb{F}_{q}[G] and its group of automorphisms.  相似文献   

4.
5.
For a family A{\mathcal{A}} and a set Z, denote {A ? A \colon A ?Z 1 ?}{\{A \in \mathcal{A} \colon A \cap Z \neq \emptyset\}} by A(Z){\mathcal{A}(Z)}. For positive integers n and r, let Sn,r{\mathcal{S}_{n,r}} be the trivial compressed intersecting family {A ? (c[n]r ) \colon 1 ? A}{\{A \in \big(\begin{subarray}{c}[n]\\r \end{subarray}\big) \colon 1 \in A\}}, where [n] : = {1, ?, n}{[n] := \{1, \ldots, n\}} and (c[n]r ) : = {A ì [n] \colon |A| = r}{\big(\begin{subarray}{c}[n]\\r \end{subarray}\big) := \{A \subset [n] \colon |A| = r\}}. The following problem is considered: For rn/2, which sets Z í [n]{Z \subseteq [n]} have the property that |A(Z)| £ |Sn,r(Z)|{|\mathcal{A}(Z)| \leq |\mathcal{S}_{n,r}(Z)|} for any compressed intersecting family A ì (c[n]r ){\mathcal{A}\subset \big(\begin{subarray}{c}[n]\\r \end{subarray}\big)}? (The answer for the case 1 ? Z{1 \in Z} is given by the Erdős–Ko–Rado Theorem.) We give a complete answer for the case |Z| ≥ r and a partial answer for the much harder case |Z| < r. This paper is motivated by the observation that certain interesting results in extremal set theory can be proved by answering the question above for particular sets Z. Using our result for the special case when Z is the r-segment {2, ?, r+1}{\{2, \ldots, r+1\}}, we obtain new short proofs of two well-known Hilton–Milner theorems. At the other extreme end, by establishing that |A(Z)| £ |Sn,r(Z)|{|\mathcal{A}(Z)| \leq |\mathcal{S}_{n,r}(Z)|} when Z is a final segment, we provide a new short proof of a Holroyd–Talbot extension of the Erdős-Ko-Rado Theorem.  相似文献   

6.
We show that within the class of left-invariant naturally reductive metrics MNat(G){\mathcal{M}_{{\rm Nat}}(G)} on a compact simple Lie group G, every metric is spectrally isolated. We also observe that any collection of isospectral compact symmetric spaces is finite; this follows from a somewhat stronger statement involving only a finite part of the spectrum.  相似文献   

7.
Let G be a group and let Aut c (G) be the group of central automorphisms of G. Let be the set of all central automorphisms of G fixing Z(G) elementwise. In this paper we prove that if G is a finite p-group, then = Inn(G) if and only if G is abelian or G is nilpotent of class 2 and Z(G) is cyclic. This work was supported in part by the Center of Excellence for Mathematics, University of Isfahan, Iran. Received: 30 October 2006  相似文献   

8.
The motivation for this paper comes from the Halperin–Carlsson conjecture for (real) moment-angle complexes. We first give an algebraic combinatorics formula for the M?bius transform of an abstract simplicial complex K on [m]={1,…,m} in terms of the Betti numbers of the Stanley–Reisner face ring k(K) of K over a field k. We then employ a way of compressing K to provide the lower bound on the sum of those Betti numbers using our formula. Next we consider a class of generalized moment-angle complexes ZK(\mathbb D, \mathbb S)\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})}, including the moment-angle complex ZK\mathcal{Z}_{K} and the real moment-angle complex \mathbbRZK\mathbb{R}\mathcal {Z}_{K} as special examples. We show that H*(ZK(\mathbb D, \mathbb S);k)H^{*}(\mathcal{Z}_{K}^{(\underline{\mathbb{ D}}, \underline{\mathbb{ S}})};\mathbf{k}) has the same graded k-module structure as Tor  k[v](k(K),k). Finally we show that the Halperin–Carlsson conjecture holds for ZK\mathcal{Z}_{K} (resp. \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}) under the restriction of the natural T m -action on ZK\mathcal{Z}_{K} (resp. (ℤ2) m -action on \mathbb RZK\mathbb{ R}\mathcal{Z}_{K}).  相似文献   

9.
We provide a sufficient condition on a class of compact basic semialgebraic sets for their convex hull co(K) to have a semidefinite representation (SDr). This SDr is explicitly expressed in terms of the polynomials g j that define K. Examples are provided. We also provide an approximate SDr; that is, for every fixed , there is a convex set such that (where B is the unit ball of ), and has an explicit SDr in terms of the g j ’s. For convex and compact basic semi-algebraic sets K defined by concave polynomials, we provide a simpler explicit SDr when the nonnegative Lagrangian L f associated with K and any linear is a sum of squares. We also provide an approximate SDr specific to the convex case.   相似文献   

10.
Let R be the ring of integers in a number field F, Λ any R-order in a semisimple F-algebra Σ, α an R-automorphism of Λ. Denote the extension of α to Σ also by α. Let Λ α [T] (resp. Σ α [T] be the α-twisted Laurent series ring over Λ (resp. Σ). In this paper we prove that (i) There exist isomorphisms ) for all n ≥ 1. (ii) is an l-complete profinite Abelian group for all n≥2. (iii)for all n≥2. (iv)is injective with uniquely l-divisible cokernel (for all n≥2). (v) K –1(Λ), K –1 α [T]) are finitely generated Abelian groups. Presented by Alain Verschoren.  相似文献   

11.
We show that for every finitely presented pro-p nilpotent-by-abelian-by-finite group G there is an upper bound on \({\dim _{{\mathbb{Q}_p}}}\left( {{H_1}\left( {M,{\mathbb{Z}_p}} \right){ \otimes _{{\mathbb{Z}_p}}}{\mathbb{Q}_p}} \right)\), as M runs through all pro-p subgroups of finite index in G.  相似文献   

12.
A code C{{\mathcal C}} is \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-additive if the set of coordinates can be partitioned into two subsets X and Y such that the punctured code of C{{\mathcal C}} by deleting the coordinates outside X (respectively, Y) is a binary linear code (respectively, a quaternary linear code). The corresponding binary codes of \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-additive codes under an extended Gray map are called \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes. In this paper, the invariants for \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes, the rank and dimension of the kernel, are studied. Specifically, given the algebraic parameters of \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear codes, the possible values of these two invariants, giving lower and upper bounds, are established. For each possible rank r between these bounds, the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code with rank r is given. Equivalently, for each possible dimension of the kernel k, the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code with dimension of the kernel k is given. Finally, the bounds on the rank, once the kernel dimension is fixed, are established and the construction of a \mathbbZ2\mathbbZ4{{\mathbb{Z}_2\mathbb{Z}_4}}-linear code for each possible pair (r, k) is given.  相似文献   

13.
A group G is said to be capable if it is isomorphic to the central factor group H/Z(H) for some group H. Let G be a nonabelian group of order p 2 q for distinct primes p and q. In this paper, we compute the nonabelian tensor square of the group G. It is also shown that G is capable if and only if either Z(G) = 1 or p < q and Gab=\mathbbZp×\mathbbZp{G^{\rm ab}=\mathbb{Z}_{p}\times\mathbb{Z}_{p}} .  相似文献   

14.
An undirected graph G = (V, E) is called \mathbbZ3{\mathbb{Z}_3}-connected if for all b: V ? \mathbbZ3{b: V \rightarrow \mathbb{Z}_3} with ?v ? Vb(v)=0{\sum_{v \in V}b(v)=0}, an orientation D = (V, A) of G has a \mathbbZ3{\mathbb{Z}_3}-valued nowhere-zero flow f: A? \mathbbZ3-{0}{f: A\rightarrow \mathbb{Z}_3-\{0\}} such that ?e ? d+(v)f(e)-?e ? d-(v)f(e)=b(v){\sum_{e \in \delta^+(v)}f(e)-\sum_{e \in \delta^-(v)}f(e)=b(v)} for all v ? V{v \in V}. We show that all 4-edge-connected HHD-free graphs are \mathbbZ3{\mathbb{Z}_3}-connected. This extends the result due to Lai (Graphs Comb 16:165–176, 2000), which proves the \mathbbZ3{\mathbb{Z}_3}-connectivity for 4-edge-connected chordal graphs.  相似文献   

15.
By a totally regular parallelism of the real projective 3-space P3:=PG(3, \mathbb R){\Pi_3:={{\rm PG}}(3, \mathbb {R})} we mean a family T of regular spreads such that each line of Π 3 is contained in exactly one spread of T. For the investigation of totally regular parallelisms the authors mainly employ Klein’s correspondence λ of line geometry and the polarity π 5 associated with the Klein quadric H 5 (for details see Chaps. 1 and 3). The λ-image of a totally regular parallelism T is a hyperflock of H 5, i.e., a family H of elliptic subquadrics of H 5 such that each point of H 5 is on exactly one subquadric of H. Moreover, {p5(span  l(X))|X ? T}=:HT{\{\pi_5({{\rm span}} \,\lambda(\mathcal {X}))\vert\mathcal {X}\in\bf{T}\}=:\mathcal {H}_{\bf{T}}} is a hyperflock determining line set, i.e., a set Z{\mathcal {Z}} of 0-secants of H 5 such that each tangential hyperplane of H 5 contains exactly one line of Z{\mathcal {Z}} . We say that dim(span HT)=:dT{{{\rm dim}}({{\rm span}}\,\mathcal {H}_{\bf{T}})=:d_{\bf{T}}} is the dimension of T and that T is a d T - parallelism. Clifford parallelisms and 2-parallelisms coincide. The examples of non-Clifford parallelisms exhibited in Betten and Riesinger [Result Math 47:226–241, 2004; Adv Geom 8:11–32, 2008; J Geom (to appear)] are totally regular and of dimension 3. If G{\mathcal{G}} is a hyperflock determining line set, then {l-1 (p5(X) ?H5) | X ? G}{\{\lambda^{-1}\,{\rm (}\pi_5(X){\,\cap H_5)\,|\, X\in\mathcal{G}\}}} is a totally regular parallelism. In the present paper the authors construct examples of topological (see Definition 1.1) 4- and 5-parallelisms via hyperflock determining line sets.  相似文献   

16.
Summary. Let k ≥ 1 be any integer. Let G be a finite abelian group of exponent n. Let sk(G) be the smallest positive integer t such that every sequence S in G of length at least t has a zero-sum subsequence of length kn. We study this constant for groups when d = 3 or 4. In particular, we prove, as a main result, that for every k ≥ 4, and for every prime p ≥ 5.  相似文献   

17.
Let Ω be a compact convex domain in and let L be a bounded linear operator that maps a subspace of C(Ω) into C(Ω). Suppose that L reproduces polynomials up to degree m. We show that for appropriately defined coefficients amrj the operator
reproduces polynomials up to degree m+r. This is an immediate consequence of the main result (Theorem 3.1) which provides an integral representation of the error f(x) − Hmr[f](x). Special emphasis is given to positive linear operators L. In this case, sharp error bounds are established (Theorem 4.4) and interpolation properties are pointed out (Theorem 4.5). We also discuss various classes of admissible operators L and show an interrelation (Theorem 5.1).   相似文献   

18.
We prove that a (globally) subanalytic function ${f : X \subset {\bf Q}^{n}_{p} \rightarrow {\bf Q}_{p}}We prove that a (globally) subanalytic function f : X ì Qnp ? Qp{f : X \subset {\bf Q}^{n}_{p} \rightarrow {\bf Q}_{p}} which is locally Lipschitz continuous with some constant C is piecewise (globally on each piece) Lipschitz continuous with possibly some other constant, where the pieces can be taken to be subanalytic. We also prove the analogous result for a subanalytic family of functions fy : Xy ì Qnp ? Qp{f_{y} : X_{y} \subset {\bf Q}^{n}_{p} \rightarrow {\bf Q}_{p}} depending on p−adic parameters. The statements also hold in a semi-algebraic set-up and also in a finite field extension of Q p . These results are p−adic analogues of results of K. Kurdyka over the real numbers. To encompass the total disconnectedness of p−adic fields, we need to introduce new methods adapted to the p−adic situation.  相似文献   

19.
If G has a nilpotent normal p-complement and V is a finite, faithful and completely reducible G-module of characteristic p, we prove that there exist ${v_1, v_2 \in V}If G has a nilpotent normal p-complement and V is a finite, faithful and completely reducible G-module of characteristic p, we prove that there exist v1, v2 ? V{v_1, v_2 \in V} such that CG(v1)?CG(v2) = P{{\bf C}_{G}{(v_1)}\cap {\bf C}_{G}{(v_2)} = P} , where P ? Sylp(G){P \in {\rm Syl}_p(G)} . We hence deduce that, if the normal p-complement K is nontrivial, there exists v ? CV(P){v \in {\bf C}_{V}(P)} such that |K : C K (v)|2 > |K|.  相似文献   

20.
The bigraded Frobenius characteristic of the Garsia-Haiman module M μ is known [7, 10] to be given by the modified Macdonald polynomial [(H)\tilde]m[X; q, t]{\tilde{H}_{\mu}[X; q, t]}. It follows from this that, for m\vdash n{\mu \vdash n} the symmetric polynomial ?p1 [(H)\tilde]m[X; q, t]{{\partial_{p1}} \tilde{H}_{\mu}[X; q, t]} is the bigraded Frobenius characteristic of the restriction of M μ from S n to S n-1. The theory of Macdonald polynomials gives explicit formulas for the coefficients c μ v occurring in the expansion ?p1 [(H)\tilde]m[X; q, t] = ?v ? mcmv [(H)\tilde]v[X; q, t]{{\partial_{p1}} \tilde{H}_{\mu}[X; q, t] = \sum_{v \to \mu}c_{\mu v} \tilde{H}_{v}[X; q, t]}. In particular, it follows from this formula that the bigraded Hilbert series F μ (q, t) of M μ may be calculated from the recursion Fm (q, t) = ?v ? mcmv Fv (q, t){F_\mu (q, t) = \sum_{v \to \mu}c_{\mu v} F_v (q, t)}. One of the frustrating problems of the theory of Macdonald polynomials has been to derive from this recursion that Fm(q, t) ? N[q, t]{F\mu (q, t) \in \mathbf{N}[q, t]}. This difficulty arises from the fact that the c μ v have rather intricate expressions as rational functions in q, t. We give here a new recursion, from which a new combinatorial formula for F μ (q, t) can be derived when μ is a two-column partition. The proof suggests a method for deriving an analogous formula in the general case. The method was successfully carried out for the hook case by Yoo in [15].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号