首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This article presents a porous media transport approach to model the performance of an air-cooled condenser. The finned tube bundles in the condenser are represented by a porous matrix, which is defined by its porosity, permeability, and the form drag coefficient. The porosity is equal to the tube bundle volumetric void fraction and the permeability is calculated by using the Karman–Cozney correlation. The drag coefficient is found to be a function of the porosity, with little sensitivity to the way this porosity is achieved, i.e., with different fin size or spacing. The functional form was established by analyzing a relatively wide range of tube bundle size and topologies. For each individual tube bundle configuration, the drag coefficient was selected by trial and error so as to make the pressure drop from the porous medium approach match the pressure drop calculated by the heat exchanger design software ASPEN B-JAC. The latter is a well-established commercial heat exchanger design program that calculates the pressure drop by using empirical formulae based on the tube bundle properties. A close correlation is found between the form drag coefficient and the porosity with the drag coefficient decreasing with increasing porosity. A second order polynomial is found to be adequate to represent this relationship. Heat transfer and second law (of thermodynamics) performance of the system has also been investigated. The volume-averaged thermal energy equation is able to accurately predict the hot spots. It has also been observed that the average dimensionless wall temperature is a parabolic function of the form drag coefficient. The results are found to be in good agreement with those available in the open literature.  相似文献   

2.
李勇  钱蔚旻  何录武 《力学季刊》2022,43(1):171-177
在表征体元尺度采用格子Boltzmann方法分析膨胀性非牛顿流体在多孔介质中的流动,基于二阶矩模型在演化方程中引入表征介质阻力的作用力项,求解描述渗流模型的广义Navier-Stokes方程.采用局部法计算形变速率张量,通过循环迭代得到非牛顿粘度和松弛时间.对多孔介质的Poiseuille流动进行分析,通过比较发现结果与孔隙尺度的解析解十分吻合,并且收敛较快,表明方法合理有效.分析了渗透率和幂律指数对速度和压力降的影响,研究结果表明,膨胀性流体的多孔介质流动不符合达西规律,压力降的增加幅度小于渗透率的减小幅度.当无量纲渗透率Da小于10-5时,流道中的速度呈现均匀分布,并且速度分布随着幂律指数的减小趋于平滑.压力降随着幂律指数的增加而增加,Da越大幂律指数对压力降的影响越明显.  相似文献   

3.
We examine the effect of viscous forces on the displacement of one fluid by a second, immiscible fluid along parallel layers of contrasting porosity, absolute permeability and relative permeability. Flow is characterized using five dimensionless numbers and the dimensionless storage efficiency, so results are directly applicable, regardless of scale, to geologic carbon storage. The storage efficiency is numerically equivalent to the recovery efficiency, applicable to hydrocarbon production. We quantify the shock-front velocities at the leading edge of the displacing phase using asymptotic flow solutions obtained in the limits of no crossflow and equilibrium crossflow. The shock-front velocities can be used to identify a fast layer and a slow layer, although in some cases the shock-front velocities are identical even though the layers have contrasting properties. Three crossflow regimes are identified and defined with respect to the fast and slow shock-front mobility ratios, using both theoretical predictions and confirmation from numerical flow simulations. Previous studies have identified only two crossflow regimes. Contrasts in porosity and relative permeability exert a significant influence on contrasts in the shock-front velocities and on storage efficiency, in addition to previously examined contrasts in absolute permeability. Previous studies concluded that the maximum storage efficiency is obtained for unit permeability ratio; this is true only if there are no contrasts in porosity and relative permeability. The impact of crossflow on storage efficiency depends on the mobility ratio evaluated across the fast shock-front and on the time at which the efficiency is measured.  相似文献   

4.
In this article, we introduce an integrated method for characterizing permeability heterogeneity at the core scale. It combines the results of laboratory core flooding with already-developed field scale history matching techniques such as gradual deformation and pilot points. Prior to any experiment, X-ray computed tomography (CT) imaging techniques are used to obtain three-dimensional porosity distribution in cores. The samples are submitted to viscous, miscible displacement of water by water–glycerin mixture. The dynamic data collected during injection are the time variations in inlet–outlet pressure drop and three-dimensional CT-scan concentration maps of invading fluid collected at successive times. We develop an inversion or matching process which takes advantage of the available data to characterize the spatial distribution of permeability heterogeneities within core samples. Permeability is assumed to be related to porosity. This matching process involves two successive optimizations. First, an initial permeability guess derived from porosity is modified by varying deterministic parameters until the corresponding simulated pressure answer fits the measured pressure drop. Second, an extended optimization process with both deterministic and stochastic parameters is run to match pressure drop and concentration data. This methodology is applied to a synthetic example for which the permeability–porosity relation is known. It yields a three-dimensional permeability model reproducing the reference pressure and concentration maps. The methodology is also applied to experimental data. In this case, it provides three-dimensional permeability models leading to an improved, but perfectible data match. A major difficulty is the unknown relationship between permeability and porosity.  相似文献   

5.
Modified Particle Detachment Model for Colloidal Transport in Porous Media   总被引:4,自引:0,他引:4  
Particle detachment from the rock during suspension transport in porous media was widely observed in laboratory corefloods and for flows in natural reservoirs. A new mathematical model for detachment of particles is based on mechanical equilibrium of a particle positioned on the internal cake or matrix surface in the pore space. The torque balance of drag, electrostatic, lifting and gravity forces, acting on the particle from the matrix and the moving fluid, is considered. The torque balance determines maximum retention concentration during the particle capture. The particle torque equilibrium is determined by the dimensionless ratio between the drag and normal forces acting on the particle. The maximum retention function of the dimensionless ratio (dislodging number) closes system of governing equations for colloid transport with particle release. One-dimensional problem of coreflooding by suspension accounting for limited particle retention, controlled by the torque sum, allows for exact solution under the assumptions of constant filtration coefficient and porosity. The explicit formulae permit the calculation of the model parameters (maximum retention concentration, filtration and formation damage coefficients) from the history of the pressure drop across the core during suspension injection. The values for maximum retention concentration, as obtained from two coreflood tests, have been matched with those calculated by the torque balance on the micro scale.  相似文献   

6.
Transient numerical simulations of fluid flow and heat transfer over a bank of flat tubes have been carried for both in-line and staggered configurations for the following boundary conditions: (a) isothermal and (b) isoflux. The effect of Reynolds number, Prandtl number, length ratio, and the height ratio, on the Nusselt number, and the dimensionless pressure drop are elucidated. Correlations are proposed for both pressure drop and Nusselt number and optimum configurations have been determined.  相似文献   

7.
Most porous solids are inhomogeneous and anisotropic, and the flows of fluids taking place through such porous solids may show features very different from that of flow through a porous medium with constant porosity and permeability. In this short paper we allow for the possibility that the medium is inhomogeneous and that the viscosity and drag are dependent on the pressure (there is considerable experimental evidence to support the fact that the viscosity of a fluid depends on the pressure). We then investigate the flow through a rectangular slab for two different permeability distributions, considering both the generalized Darcy and Brinkman models. We observe that the solutions using the Darcy and Brinkman models could be drastically different or practically identical, depending on the inhomogeneity, that is, the permeability and hence the Darcy number.  相似文献   

8.
Numerical simulations of the flow of rigid fibres through a 4:1 planar contraction, and the predicted flow pattern and fiber orientation are presented. Entirely new is the examination of the nature of the suspending matrix which may consist of either a Newtonian fluid or a polymer melt. In the case of a polymer matrix three rheological models, the Phan-Thien–Tanner, FENE-CR, and Carreau models have been used to investigate the effects of shear-thinning and elasticity on the flow and the orientation of the fibers. The effects of inertia are neglected, and the governing equations for the flow field, polymer stress, and fiber orientation are coupled and simultaneously solved. A parametric study is used to explore the effects of different dimensionless parameters on the velocity field, the fiber orientation, the pressure drop, as well as the vortex size measured by the dimensionless reattachment length. We particularly focus on the role of the fibers aspect ratio, volume fraction, and interaction coefficient which measures the intensity of fiber interaction in the suspension. Furthermore, we evaluate and compare the results of four different closure approximations: the quadratic, linear, hybrid A and T, and natural closures.  相似文献   

9.
The effect of local thermal non-equilibrium on the onset of convection in a porous medium consisting of two horizontal layers is studied analytically. Linear stability theory is applied. Variations of permeability, fluid conductivity, solid conductivity, interphase heat transfer coefficient and porosity are considered. It is found that heterogeneity of permeability and fluid conductivity have a major effect, heterogeneity of interphase heat transfer coefficient and porosity have a lesser effect, while heterogeneity of solid conductivity is relatively unimportant.  相似文献   

10.
Entropy generation in the flow field subjected to a porous block situated in a vertical channel is examined. The effects of channel inlet port height (vertical height between channel inlet port and the block center), porosity, and block aspect ratio on the entropy generation rate due to fluid friction and heat transfer in the fluid are examined. The governing equations of flow, heat transfer, and entropy are solved numerically using a control volume approach. Air is used as the flowing fluid in the channel. A uniform heat flux is considered in the block and natural convection is accommodated in the analysis. It is found that entropy generation rate due to fluid friction increases with increasing inlet port height, while this increase becomes gradual for entropy generation rate due to heat transfer for the inlet port height exceeding 0.03 m. The porosity lowers entropy generation rate due to fluid friction and heat transfer. The effect of block aspect ratio on entropy generation rate is notable; in which case, entropy generation rate increases for the block aspect ratio of 1:2.  相似文献   

11.
变形双重介质广义流动分析   总被引:21,自引:0,他引:21  
对于碳酸盐油藏和低渗油藏的渗流问题,传统的研究方法都是假设地层渗透率是常数,这假设,对于地层渗透率是压力敏感的情况,对压力的空间变化和瞬时变化将导致较大的误差。本文研究了应力敏感地层中双重介质渗流问题的压力不稳定响应,不仅考虑了储层的双重介质特征,而且考虑了应力敏感地层中介质的变形,建立了应力敏感地层双重介质的数学模型,渗透率依赖于孔隙压力变化的流动方程是强非线性的,采用Douglas-Jones预估-校正法获得了只有裂缝发生形变定产量生产时无限大地层的数值解及定产量生产岩块与裂隙同时发生形变时无限大地层的数值解,并探讨了变形参数和双重介质参数变化时压力的变化规律,给出几种情况下典型压力曲线图版,这些结果可用于实际试井分析。  相似文献   

12.
Many reservoir simulator inputs are derived from laboratory experiments. Special core analysis techniques generally assume that core samples are homogeneous. This assumption does not hold for porous media with significant heterogeneities. This paper presents a new method to characterize core scale permeability heterogeneity. The method is validated by both numerical and experimental results. The leading idea consists in injecting a high viscosity miscible fluid into a core sample saturated with a low viscosity fluid. In such conditions, the fluid displacement is expected to be piston-like. We investigate the evolution of the pressure drop as a function of time. A continuous permeability profile is estimated along flow direction from the pressure drop assuming that the core sample is a stack of infinitely thin cross sections perpendicular to flow direction. Thus, we determine a permeability value for each cross section. Numerical and laboratory experiments are carried out to validate the method. Flow simulations are performed for numerical models representing core samples to estimate the pressure drop. The selected models are sequences of plugs with constant permeabilities. In addition, laboratory displacements are conducted for both low permeability and high permeability core samples. To investigate whether there is dispersion inside the porous medium, CT scan measurements are performed during fluid displacement: the location of the front is observed at successive time intervals. The results validate the methodology developed in this paper as long as heterogeneity is one dimensional.  相似文献   

13.
Open-cell metal foams are often used in heat exchangers and absorption equipment because they exhibit large specific surface area and present tortuous coolant flow paths. However, published research works on the characteristics of fluid flow in metal foams are relatively scarce, especially for the flow oscillation condition. The present experimental investigation attempts to uncover the behavior of steady and oscillating flows through metal foams with a tetrakaidecahedron structure. In the experiments, steady flow was supplied by an auto-balance compressor and flow oscillation was provided by an oscillating flow generator. The pressure drop and velocity were measured by the differential pressure transducer and hot-wire sensor, respectively. The friction factor of steady flow in metal foam channel was analyzed through the permeability and inertia coefficient of the porous medium. The results show that flow resistance in the metal foams increases with increasing form coefficient and decreasing permeability. The empirical equation obtained by the present study indicates that the maximum friction factor of oscillating flow through the tested aluminum foams with specific structure is governed by the hydraulic ligament diameter-based kinetic Reynolds number and the dimensionless flow amplitude.  相似文献   

14.
The effect of local thermal non-equilibrium on the onset of convection in a porous medium consisting of two horizontal layers, each internally heated, is studied analytically. Linear stability theory is applied. Variations of permeability, fluid thermal conductivity, solid thermal conductivity, source strength in the solid and fluid phases, interphase heat-transfer coefficient and porosity are considered. It is found that heterogeneity of permeability, fluid thermal conductivity and source strength in the fluid phase have a major effect; heterogeneity of interphase heat-transfer coefficient and porosity have a lesser effect, while heterogeneity of solid thermal conductivity and source strength in the solid phase are relatively unimportant.  相似文献   

15.
Poroelasticity is a theory that quantifies the time-dependent mechanical behavior of a fluid-saturated porous medium induced by the interaction between matrix deformation and interstitial fluid flow. Based on this theory, we present an analytical solution of interstitial fluid pressure in poroelastic materials under uniaxial cyclic loading. The solution contains transient and steady-state responses. Both responses depend on two dimensionless parameters: the dimensionless frequency Ω that stands for the ratio of the characteristic time of the fluid pressure relaxation to that of applied forces, and the dimensionless stress coefficient H governing the solid-fluid coupling behavior in poroelastic materials. When the phase shift between the applied cyclic loading and the corresponding fluid pressure evolution in steady-state is pronounced, the transient response is comparable in magnitude to the steady-state one and an increase in the rate of change of fluid pressure is observed immediately after loading. The transient response of fluid pressure may have a significant effect on the mechanical behavior of poroelastic materials in various fields.  相似文献   

16.
In the framework of a three-fluid approach, a new model of suspension filtration in a porous medium is constructed with account for the formation of a dense packing of trapped particles with finite permeability and porosity. The following three continua are considered: the carrier fluid, the suspended particles, and the deposited particles. For a one-dimensional transient flow of suspension, a system of equations for the concentrations of the suspended and deposited particles, the suspension velocity, and the pressure is constructed. Two cases of the flow in a porous medium are considered: plane and radial. Numerical solution is found using a finite-difference method. Numerical calculations are shown to be in agreement with an analytical solution for the simplest case of filtration with a constant velocity and constant porosity and permeability. A comparison is performed with the classic filtration models for five sets of experimental data on the contamination of a porous sample. It is shown that near the inlet boundary, where an intense deposition of particles takes place, the new model describes the concentration profile of the deposited particles more accurately than the classical model.  相似文献   

17.
A numerical study has been conducted to examine the heat transfer from a metal foam-wrapped solid cylinder in cross-flow. Effects of the key parameters including the free stream velocity and characteristics of metal foam such as porosity, permeability, and form drag coefficient on heat and fluid flow are examined. Being a determining factor in pressure drop and heat transfer increment, the porous layer thickness is changed systematically to observe that there is an optimum layer thickness beyond which the heat transfer does not improve while the pressure drop continues to increase. This has been verified by the application of Bejan’s Intersection of Asymptotes method. Results have been compared to those of a finned-tube heat exchanger to observe much higher heat transfer rate with reasonable excess pressure drop leading to a higher area goodness factor for metal foam-wrapped cylinder.  相似文献   

18.
The effect of a confining wall on the pressure drop of fluid flow through packed beds of spherical particles with small bed-to-particle diameter ratios was investigated to develop an improved pressure drop correlation. The dependency of pressure loss on both wall friction and increased porosity near the wall was accounted for by using a theoretical approach. A semi-empirical model was created based upon the capillary-orifice model, which included a wall correction factor for the inertial pressure loss. In this model, packed beds were treated as a bundle of capillary tubes whose orifice diameter in the core region was different from that of the wall region. Using this model, a new pressure drop correlation was obtained, based on the Ergun equation and applicable for a wide range of Reynolds numbers (10−2–103). The proposed correlation was compared with previous correlations, as well as with experimental data. This correlation showed close agreement with the experimental data for both low- and high-Reynolds number regimes and for a wide range of bed-to-particle diameter ratios. The ratio of the pressure drop in finite packing to that in homogeneous packing was then calculated. This ratio clearly shows how the wall effect depends on the Reynolds number and the bed-to-particle diameter ratio.  相似文献   

19.
In this paper we focus on the impact of varying the aspect ratio of rectangular microchannels, on the overall pressure drop involving water boiling. An integrated system comprising micro-heaters, sensors and microchannels has been realized on (1 1 0) silicon wafers, following CMOS compatible process steps. Rectangular microchannels were fabricated with varying aspect ratios (width [W] to depth [H]) but constant hydraulic diameter of 142 ± 2 μm and length of 20 mm. The invariant nature of the hydraulic diameter is confirmed through two independent means: physical measurements using profilometer and by measuring the pressure drop in single-phase fluid flow. The experimental results show that the pressure drop for two-phase flow in rectangular microchannels experiences minima at an aspect ratio of about 1.6. The minimum is possibly due to opposing trends of frictional and acceleration pressure drops, with respect to aspect ratio. In a certain heat flux and mass flux range, it is observed that the two-phase pressure drop is lower than the corresponding single-phase value. This is the first study to investigate the effect of aspect ratio in two-phase flow in microchannels, to the best of our knowledge. The results are in qualitative agreement with annular flow model predictions. These results improve the possibility of designing effective heat-sinks based on two-phase fluid flow in microchannels.  相似文献   

20.
We examine the effect of capillary and viscous forces on the displacement of one fluid by a second, immiscible fluid across and along parallel layers of contrasting porosity, and relative permeability, as well as previously explored contrasts in absolute permeability and capillary pressure. We consider displacements with wetting, intermediate-wetting and non-wetting injected phases. Flow is characterized using six independent dimensionless numbers and a dimensionless storage efficiency, which is numerically equivalent to the recovery efficiency. Results are directly applicable to geologic carbon storage and hydrocarbon production. We predict how the capillary–viscous force balance influences storage efficiency as a function of a small number of key dimensionless parameters, and provide a framework to support mechanistic interpretations of complex field or experimental data, and numerical model predictions, through the use of simple dimensionless models. When flow is directed across layers, we find that capillary heterogeneity traps the non-wetting phase, regardless of whether it is the injected or displaced phase. However, minimal trapping occurs when the injected phase is intermediate-wetting or when high-permeability layers contain a smaller moveable volume of fluid than low-permeability layers. A dimensionless capillary-to-viscous number defined using the layer thickness rather than the more commonly used system length is most relevant to predict capillary heterogeneity trapping. When flow is directed along layers, we show that, regardless of wettability, increasing capillary crossflow reduces the distance between the leading edges of the injected phase in each layer and increases storage efficiency. This may be counter-intuitive when the injected phase is non-wetting. Crossflow has a significant impact on storage efficiency only when high-permeability layers contain a smaller moveable volume of fluid than low-permeability layers. In that case, capillary heterogeneity traps the wetting phase, regardless of whether it is the injected or displaced phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号