首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Two novel RuII complexes [Ru(phen)2(PNOPH)]2+ and [Ru(dmp)2 (PNOPH)]2+ (phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, PNOPH = 2-(4-nitrophenyl)imidazo-[4,5-f][1,10]phenanthroline) and their deprotoned complexes were synthesized and characterized by ES–MS, 1H - n.m.r, u.v.–vis. and electrochemistry. The crystal structure of the deprotonated complex [Ru(dmp)2 (PNOP)][ClO4] · CH3CN was determined by means of X-ray single crystal diffraction. Nonlinear optical properties of the RuII complexes were investigated by Z-scan techniques in DMF solution, and all of them exhibited both NLO absorption and self-defocusing effect. The corresponding effective NLO susceptibilities |3 | of the complexes are 2.39 × 10-12–5.80 × 10-12 esu.  相似文献   

2.
New binuclear complexes with [Cu(PPh3)3]+ and [Cu(PPh3)(N—N)]+ (N—N – 2,2-bipyridine, 1,10-phenanthroline) moieties connected via the isocyanide group to [Ru(bpy)2(py)]+ and [Ru(phen)2(py)]+ have been prepared and isolated as PF6 salts. In addition, new trinuclear complexes, [{(PPh3)3Cu(-NC)}2Ru(bpy)2](PF6)2 and [{(N—N)-(PPh3)Cu(-NC)}2Ru(bpy)2](PF6)2, have been synthesized using [Ru(bpy)2(CN)2]. The complexes have been characterized by elemental analyses, i.r., n.m.r., u.v.–vis., FAB mass spectra and by conductivity measurements. The i.r. spectra reveal an increase in v;(CN) in the isocyano-bridged complexes compared to the mononuclear parent complexes. The complexes are luminescent with emission wavelengths in the 458–550 and 600–636 nm ranges. The half wave reduction potentials in MeCN are always more positive than those of the parent complexes. It is observed that the isocyano-bridged complexes are more powerful excited state reductants than the cyano-bridged, Cu(I)(-CN)Ru(II) complexes.  相似文献   

3.
Hong  Xian-Lan  Chao  Hui  Wang  Xiang-Li  ji  Liang-Nian  li  Hong 《Transition Metal Chemistry》2004,29(5):561-565
Two novel RuII complexes [Ru(dppt)(bpy)Cl]ClO4 (1) and [Ru(pta)(bpy)Cl]ClO4 (2)[dppt, pta and bpy = 3-(1,10-phenanthrolin-2-yl)-5,6-diphenyl-as-triazine, 3-(1,10-phenanthrolin-2-yl)-as-triazino[5,6-f]acenaphthylene and 2,2-bipyridine, respectively] were synthesized and characterized by elemental analysis and electrospray mass spectrometry, 1H-n.m.r., and u.v.–vis spectroscopy. The redox properties of the complexes were examined using cyclic voltammetry. Due to the strong -accepting character of asymmetric ligands, the MLCT bands of (1) and (2) are shifted significantly to lower energies by comparison with [Ru(tpy)(bpy)Cl]+.  相似文献   

4.
DFT calculations are performed on [RuII(bpy)2(tmen)]2+ ( M1 , tmen=2,3‐dimethyl‐2,3‐butanediamine) and [RuII(bpy)2(heda)]2+ ( M2 , heda=2,5‐dimethyl‐2,5‐hexanediamine), and on the oxidation reactions of M1 to give the C?C bond cleavage product [RuII(bpy)2(NH=CMe2)2]2+ ( M3 ) and the N?O bond formation product [RuII(bpy)2(ONCMe2CMe2NO)]2+ ( M4 ). The calculated geometrical parameters and oxidation potentials are in good agreement with the experimental data. As revealed by the DFT calculations, [RuII(bpy)2(tmen)]2+ ( M1 ) can undergo oxidative deprotonation to generate Ru‐bis(imide) [Ru(bpy)2(tmen‐4 H)]+ ( A ) or Ru‐imide/amide [Ru(bpy)2(tmen‐3 H)]2+ ( A′ ) intermediates. Both A and A′ are prone to C?C bond cleavage, with low reaction barriers (ΔG) of 6.8 and 2.9 kcal mol?1 for their doublet spin states 2 A and 2 A′ , respectively. The calculated reaction barrier for the nucleophilic attack of water molecules on 2 A′ is relatively high (14.2 kcal mol?1). These calculation results are in agreement with the formation of the RuII‐bis(imine) complex M3 from the electrochemical oxidation of M1 in aqueous solution. The oxidation of M1 with CeIV in aqueous solution to afford the RuII‐dinitrosoalkane complex M4 is proposed to proceed by attack of the cerium oxidant on the ruthenium imide intermediate. The findings of ESI‐MS experiments are consistent with the generation of a ruthenium imide intermediate in the course of the oxidation.  相似文献   

5.
6.
Reaction of [Ru(trpy)Cl3] with quinolin-8-ol (HQ) yields [Ru(trpy)(Q)Cl]. Treatment of [Ru(trpy)(Q)Cl] with Ag+ in Me2CO–H2O (3:1) and MeCN gives [Ru(trpy)- (Q)(H2O)]+ and [Ru(trpy)(Q)(MeCN)]+, respectively, which were isolated as their perchlorate salts. A similar reaction in EtOH, in the presence of NaN3, yields [Ru(trpy)(Q)(N3)]. All complexes are diamagnetic (low-spin, d6, S = 0) and show many intense m.l.c.t. transitions in the visible region. They display a reversible RuII-RuIII oxidation in the -0.13-0.48 V versus s.c.e. range, followed by an irreversible RuIII-RuIV oxidation in the 0.46–1.08V versus s.c.e. range and three trpy-based reductions on the negative side of s.c.e. Chemical oxidation of [RuII(trpy)(Q)Cl] by Ce4+ gives [Ru(trpy)-(Q)Cl]+ which shows intense l.m.c.t. transitions in the visible region together with a weak ligand field transition in the lower energy region. The complex is one-electron paramagnetic (low-spin, d5, S=1/2) and shows a rhombic e.s.r. spectrum in MeCN–PhMe (1:1) solution at 77K. Chemical oxidation of [Ru(trpy)(Q)-(H2O)]+ results in the formation of a -oxo dimer, [{Ru(trpy)(Q)}2O]2+.  相似文献   

7.
Pyridine-2-carboxaldehyde reacts with /-naphthylamine to give /-naphthyl-(2-pyridylmethylene)amine [-L (1), -L (2)]. L belongs to the unsymmetric diimine (—N=C—C=N—) family which can form five–membered chelate rings with metal ions. {donor centers are abbreviated as N[N(Py)] and N [N(nap)]} [Ag(L)2]+ complexes were prepared and characterized by spectroscopic data. The reaction between L and RuCl3 in boiling EtOH yielded green and blue–green compounds of composition RuCl2(L)2. I.r., u.v.–vis. and 1H-n.m.r. data determined the stereochemistry of the complexes as trans-cis-cis (green) and cis-trans-cis (blue–green) according to the sequence of the coordination pair of Cl, N [N(Py)] and N [N(nap)]. Upon treatment of Ag(L)2 + with Ru(bpy)2Cl2 in alcoholic suspension the ternary complexes, [Ru(bpy)2(L)](ClO4)2, were isolated and characterized by spectroscopic data. [Ru(bpy)(L)2](ClO4)2 complexes were synthesized similarly from ctc-Ru(L)2Cl2 and 2,2-bipyridine (bpy) in the presence of AgNO3 and NaClO4. These complexes show well-defined m.l.c.t transitions in the visible region. The sterochemistry of the complexes was established by 1H-n.m.r. data. Cyclic voltammetry shows a high potential RuIII/RuII couple and follows the order: [Ru(bpy)(L)2]2+ > [Ru(bpy)2(L)]2+ > Ru(-L)2Cl2 > Ru(-L)2Cl2.  相似文献   

8.
A series of octahedral RuII/RuIII complexes of the type [Ru(Y)(CO)(BAX)(PPh3)2] and [RuCl2(BAX)(PPh3)2] (Y = H or Cl; BAX = benzaldehydeacetylhydrazone anion; X = H, Me, OMe, OH, Cl or NO2) have been prepared and characterised by spectral, magnetic and cyclic voltammetric studies. The RuII complexes are low spin diamagnetic (S = 0) whereas the RuIII complexes are low spin and paramagnetic (S = 1/2). These RuII and RuIII complexes absorb in the visible region respectively at ca. 16,000 and 28,000 cm–1 which bands are assigned to the MLCT. The correlation of the max values of the RuIII complexes with the + Hammett parameter, is linear, indicating the profound effect of substituents on the electron density of the central metal. I.r. spectral data reveals that the hydrazone is chelated to ruthenium through the hydrazinic nitrogen and the deprotonated enolic oxygen. The rhombic nature of the e.s.r. spectra of the RuIII complexes indicates an asymmetry in the electronic environment around the Ru atom. RuII complexes in CH2Cl2 show an irreversible RuII/III redox couple at ca. 0.9–0.5 V, while the RuIII complexes show two reversible redox couples in the –0.1–0.1 and 0.8–0.6 V range, indicating that the higher oxidation state of ruthenium is stabilised by hydrazones.  相似文献   

9.
Subtle ligand modifications on RuII-polypyridyl complexes may result in different excited-state characteristics, which provides the opportunity to tune their photo-physicochemical properties and subsequently change their biological functions. Here, a DNA-targeting RuII-polypyridyl complex (named Ru1 ) with highly photosensitizing 3IL (intraligand) excited state was designed based on a classical DNA-intercalator [Ru(bpy)2(dppz)] ⋅ 2 PF6 by incorporation of the dppz (dipyrido[3,2-a:2′,3′-c]phenazine) ligand tethered with a pyrenyl group, which has four orders of magnitude higher potency than the model complex [Ru(bpy)2(dppz)] ⋅ 2 PF6 upon light irradiation. This study provides a facile strategy for the design of organelle-targeting RuII-polypyridyl complexes with dramatically improved photobiological activity.  相似文献   

10.
A novel ligand dipyrido[1,2,5]oxadiazolo[3,4-b]quinoxaline (dpoq) and its complexes [Ru(bpy)2(dpoq)]2+ and [Ru(phen)2(dpoq)]2+ (bpy = 2,2′-bipyridine; phen = 1,10-phenanthroline) have been synthesized and characterized by elemental analysis, electrospray mass spectra and 1H NMR. The interaction of Ru(II) complexes with calf thymus DNA (CT-DNA) was investigated by absorption spectroscopy, fluorescence spectroscopy, thermal denaturation and viscosity measurements. Results suggest that two Ru(II) complexes bind to DNA via an intercalative mode.  相似文献   

11.
Two mixed porphyrin–polypyridyl RuII complexes [Ru(bpy)2(MPyTPP)Cl]Cl (1) and [Ru(phen)2(MPyTPP)Cl]Cl ( 2 ) (bpy=2,2-bipyridine; phen=1,10-phenanthroline; MPyTPP=5-monopyridyl-10,15,20–triphenylporphyrin) have been synthesized and characterized by elementary analysis, e.s.–m.s., cyclic voltammetry and u.v.–vis. spectroscopy. The DNA-binding properties of these complexes were investigated by electronic spectra, c.d. spectra and viscosity experiments. The results suggested that both complexes (1) and (2) bind to DNA in an outside binding mode. At the same time, theoretical calculations applying the ab initio and the density functional theory (DFT) methods were also performed, and the results showed that there is no good planarity on the main ligand MPyTPP of these complexes, and there are rather great distortion angles (dihedral angles ca. 72°) between the porphrin ring and each of the 10-, 15-, 20-phenyl groups. This may be the reason why the complexes bind to DNA in an outside mode, instead of an intercalative mode.  相似文献   

12.
Summary Ruthenium complexes of some tridentate and bidentate benzimidazole-, benzothiazole- and pyridine-derived ligands have been prepared as their PF f6 p– salts, and their constitutions have been confirmed by elemental analysis, 1H-n.m.r. spectroscopy and electrochemistry. The complexes are redox-active, displaying a metal-centred RuII/ RuIII oxidation process and sequential ligand-localized reduction processes. Both the 2-(2-pyridyl)benzimidazole complex [Ru(PybimH)3]2+ and the 2,2-dipyridylamine one, [Ru(DpyaH)3]2+ behave as weak Brønsted-Lowry acids. The secondary amino nitrogen of each DpyaH in the [Ru(DpyaH)3]2+ complex can be deprotonated with hydride anion, and then acts as a strong nucleophile, allowing selective N-alkylation by alkyl halides. Most of the complexes exhibit ligand-localized luminescence emission at ambient temperature. The strong intrinsic fluorescences of 2-(2-quinolyl)-N-methylbenzimidazole and 2-(2-pyridyl)-benzimidazole are quenched when they are coordinated to RuII, and emission from the chelates entailing 5-nitro-1:10-phenanthroline occurs only from the non-nitrated ligands.  相似文献   

13.
A new series of mono- and di-substituted ruthenium–polypyridine complexes of the type cis-[RuIII,II (bpy)2(L1)(L2)] n + (L1 = Cl, bta or py; L2 = bta; bpy = 2,2-bipyridine; bta = benzotriazole; py = pyridine) has been prepared, isolated as hexafluorophosphate salts, and investigated in organic solutions by means of cyclic voltammetry and spectroelectrochemistry. The chemical oxidation of all the benzotriazole derivatives, starting from cis-[RuII(bpy)2(L1)(bta)] x (x = +1 or +2), leads essentially to N(3)-bound products, i.e., cis-[RuIII(bpy)2 (L1)(N(3){bta})] x+1 isomers. Nevertheless, while the benzotriazole-monosubstituted species undergoes an intramolecular isomerization, N(3) N(2), accompanying the electrochemical reduction centered on the metal ion, RuIII RuII, the disubstituted derivatives do not display any spectral or electrochemical evidence of linkage isomerism. The equilibrium and kinetic constants for the isomerization were determined from the cyclic voltammograms at several scan rates, according to an electrochemical–chemical (EC) coupling scheme. The data were compared with a set of constants and parameters obtained previously for a series of ruthenium and iron complexes. The experimental results were found to be quite consistent with theoretical calculations, and reflect the importance of -backbonding interactions in the stabilization of the metal-centered reduced state (MII) on such species with low-spin d6 configuration.  相似文献   

14.
The reaction of [Ru(bpy)2Cl2] and Na2[Fe(CN)4(dmso)2] complexes with isonicotinic acid immobilized on silica spheres (Si-ATPS-ISN) followed by a NO bubbling produced Si-ATPS-ISN-[Ru(bpy)2(NO)] (system I) and Si-ATPS-ISN-[Fe(CN)4(NO)] (system II). The characterization of these systems was carried out by UV–Vis, FTIR spectroscopy and electrochemical techniques. As judged by the FTIR data, the nitric oxide ligand has an NO+ character in both systems (ν(NO+): 1938 cm−1). The NO release, which was monitored by means of FTIR, electrochemistry, and NO sensor electrode, was observed for both systems upon white light irradiation and chemical reduction by cysteine. These results indicated that the system (II) presents a higher potential for controlled NO release. The characterization (FTIR and UV–Vis) of the systems after the NO release suggested the formation of the aqua systems ATPS-ISN-[Ru(bpy)2(OH2)] and ATPS-ISN-[Ru(bpy)2(OH2)].  相似文献   

15.
Abstract

The substitution behavior of the [RuII(terpy)(ampy)Cl]Cl (terpy = 2,2′:6′,2′′-terpyridine, ampy = 2-(aminomethyl)pyridine) complex in water with several bio-relevant ligands such as chloride, thiourea and N,N′-dimethylthiourea, was investigated and compared with the reactivity of the [RuII(terpy)(bipy)Cl]Cl and [RuII(terpy)(en)Cl]Cl (bipy =2,2′-bipyridine and en?=?ethylenediamine) complexes. Earlier results have shown that the reactivity and pKa values of Ru(II) complexes can be tuned by a systematic variation of electronic effects provided by bidentate spectator chelates. The reactivity of both the chlorido and aqua derivatives of the studied Ru(II) complexes increases in the order [RuII(terpy)(bipy)X]+/2+?<?[RuII(terpy)(ampy)X]+/2+?<?[RuII(terpy)(en)X]+/2+. This finding can be accounted for in terms of π back-bonding effects provided by the pyridine ligands. The activation parameters for all the studied reactions support an associative interchange substitution mechanism.  相似文献   

16.
New mixed polypyridyl {HPIP = 2-(2-hydroxyphenyl)imidazo[4,5-f][1,10]phenanthroline, phen = 1,10-phenanthroline, dmp = 2,9-dimethyl-1,10-phenanthroline, dmb = 4,4-dimethyl-2,2-bipyridine} ruthenium(II) complexes [Ru(phen)2(HPIP)]2+, [Ru(dmp)2(HPIP)]2+ and [Ru(dmb)2(HPIP)]2+ were synthesized and characterized by elemental analyses 1H-n.m.r., u.v.–vis. spectroscopy and cyclic voltammetry. Their DNA-binding properties were demonstrated by absorption, luminescence titrations, steady-state emission quenching and viscosity measurements. The results suggested that all the examined complexes bind with CT-DNA intercalatively. Methyl groups substituted at the 4,4-positions of bpy has no obvious effect on its DNA binding, whereas substituents at the 2- and 9-positions of phen have an impressive effect on its DNA-binding, as revealed by the decreased binding affinity.  相似文献   

17.
Two cyano-bridged assemblies, [FeIII(salpn)]2[FeII(CN)5NO] (1) and [FeIII (salpn)]2[NiII(CN)4] (2) [salpn = N, N-1,2-propylenebis(salicylideneiminato)dianion], have been prepared and structurally and magnetically characterized. In each complex, [Fe(CN)5NO]2– or [Ni(CN)4]2– coordinates with four [Fe(salpn)]+ cations using four co-planar CN ligands, whereas each [Fe(salpn)]+ links two [Fe(CN)5NO]2– or [Ni(CN)4]2– ions in the trans form, which results in a two-dimensional (2D) network consisting of pillow-like octanuclear [—MII—CN—FeIII—NC—]4 units (M = Fe or Ni). In complex (1), the NO group of [Fe(CN)5NO]2– remains monodentate and the bond angle of FeII—N—O is 180.0°. The variable temperature magnetic susceptibilities, measured in the 5–300 K range, show weak intralayer antiferromagnetic interactions in both complexes with the intramolecular iron(III)iron(III) exchange integrals of –0.017 cm–1 for (1) and –0.020 cm–1 for (2), respectively.  相似文献   

18.
A series of four polypyridyl Ru(II) complexes such as [Ru(L)4(PIP)]2+ and [Ru(L)4PPIP]2+ where L is 4-amino pyridine and Pyridine (PIP?=?2-phenylimidazo[4,5-f] [1, 10] phenanthroline), (PPIP?=?2-(4??-phenoxy-phenyl) imidazo[4,5-][1, 10]phenanthroline) have been synthesized and characterized by elemental analysis, physicochemical methods such as UV?Cvis, IR and NMR spectroscopic techniques. The DNA-binding behavior of these complexes was investigated by electronic absorption titrations, fluorescence spectroscopy, viscosity measurements and salt-dependent studies. The experimental results indicate that all these complexes can bind to DNA through an intercalation mode, the DNA-binding affinities of these complexes follow the order [Ru(4-APy)4(PPIP)]2+(1)?>?[Ru(Py)4PPIP]2+(2)?>?[Ru(4-APy)4(PIP)]2+(3)?>?[Ru(Py)4PIP]2+(4). Noticeably, these complexes have been found to be efficient photosensitisers for strand scissions in plasmid DNA. Further, all four complexes screened for their antimicrobial activity indicate that the complexes show appreciable activity against Escherichia coli and Neurospora Crassa. In addition, in the presence of Co2+, the emission of DNA-[Ru(L4)PPIP/PIP]2+ can be quenched and recovered by the addition of EDTA, which exhibited the DNA ??light switch?? properties.  相似文献   

19.
Mixed-chelate complexes of ruthenium have been synthesized using tridentate Schiff-base ligands (TDLs) derived from condensation of 2-aminophenol or 2-aminobenzoic acid with aldehydes (salicyldehyde, 2-pyridinecarboxaldehyde), and tmeda (tetramethylethylenediamine). [RuIII(hpsd)(tmeda)(H2O)]+ (1), [RuIII(hppc)(tmeda)(H2O)]2+ (2), [RuIII(cpsd)(tmeda)(H2O)]+ (3) and [RuIII(cppc)(tmeda)(H2O)]2+ (4) complexes (where hpsd2− = N-(hydroxyphenyl)salicylaldiminato); hppc = N-(2-hydroxyphenylpyridine-2-carboxaldiminato); cpsd2− = (N-(2-carboxyphenyl)salicylaldiminato); cppc = N-2-carboxyphenylpyridine-2-carboxaldiminato) were characterized by microanalysis, spectral (IR and UV–vis), conductance, magnetic moment and electrochemical studies. Complexes 14 catalyzed the epoxidation of cyclohexene, styrene, 4-chlorostyrene, 4-methylstyrene, 4-methoxystyrene, 4-nitrostyrene, cis- and trans-stilbenes effectively at ambient temperature using tert-butylhydroperoxide (t-BuOOH) as terminal oxidant. On the basis of Hammett correlation (log krel vs. σ+) and product analysis, a mechanism involving intermediacy of a [Ru–O–OBut] radicaloid species is proposed for the catalytic epoxidation process.  相似文献   

20.
Binuclear complexes [M2Cl4(-bpym)], where M = VO2+, FeII, CoII or CuII and bpym = 2,2-bipyrimidine, and [M2(hfacac)4(-bpym)] complexes, where hfacac = hexafluoroacetylacetonate and M = FeII, NiII or CoII have been synthesized and characterized by chemical analysis, conductance measurements, i.r., electronic and e.p.r spectroscopies and by magnetic susceptibility measurements (in the 4.2–291K range). CoII and FeII are in a high spin state. [(VO)2Cl4(-bpym)] is paramagnetic, without significant interactions. [Fe2Cl4(-bpym)] shows a singular behaviour explained by an antiferromagnetic intradimer exchange and a ferromagnetic interdimer interaction. All other complexes are antiferromagnetic, with an intramolecular exchange parameter, J, varying from –3.3 cm–1 for CoII/math> to –109 cm–1 for CuII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号