首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Synthesis process of nanowired Al/CuO thermite   总被引:1,自引:0,他引:1  
Al/CuO nanothermites were fabricated by thermal oxidation of copper layer at 450 °C for 5 h and by aluminum thermal evaporation: thermal evaporation allows producing thin layer less than 2 μm in size. The copper has been deposited by electroplating or thermal evaporation depending on the required thickness. The obtained diameter of Al/CuO nanowires is 150-250 nm. Al/CuO nanowires composite were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), differential scanning calorimetry (DSC) and differential thermal analysis (DTA). Two distinct exothermic reactions occurred at 515 and 667 °C and total energy release of this thermite is 10 kJ/cm3.  相似文献   

2.
Platinum intermediate transparent and conducting ITO/metal/ITO (IMI) multilayered films were deposited by RF and DC magnetron sputtering on polycarbonate substrates without intentional substrate heating. Changes in the microstructure and optoelectrical properties of the films were investigated with respect to the thickness of the intermediate Pt layer in the IMI films. The thickness of Pt film was varied from 5 to 20 nm.In XRD measurements, neither ITO single-layer films nor IMI multilayer films showed any characteristic diffraction peaks for In2O3 or SnO2. Only a weak diffraction peak for Pt (1 1 1) was obtained in the XRD spectra. Thus, it can be concluded that the Pt-intermediated films in the IMI films did not affect the crystallinity of the ITO films. However, equivalent resistivity was dependent on the presence and thickness of the Pt-intermediated layer. It decreased as low as 3.3×10−4 Ω cm for ITO 50 nm/Pt 20 nm/ITO 30 nm films. Optical transmittance was also strongly influenced by the Pt-intermediated layer. As Pt thickness in the IMI films increased, optical transmittance decreased to as low as 30% for ITO 50 nm/Pt 20 nm/ITO 30 nm films.  相似文献   

3.
The intercalation compounds of kaolinite/potassium acetate were prepared by grinding and aging mixtures of potassium acetate and kaolinite from coal measures. The techniques of XRD, ICP-AES, IR, DSC, SEM and particle-size distribution analysis were used to characterize the microstructure and stability of the as-obtained intercalation compounds. The basal spacing increased from 0.72 nm for the raw kaolinite to 1.42 nm for the intercalation compound. The intercalation compounds were very stable in the anhydrous ethanol at room temperature, whereas deintercalation occurred when the as-obtained intercalation compounds were treated with water or heated at 296 °C.  相似文献   

4.
Monodispersed spherical ZnS particles as well as doped with Cu, Mn ions were synthesized from metal-chelate solutions of ethylenediamine tetraacetate (EDTA) and thioacetamide (TAA). The characterizations of the ZnS-based particles were investigated via TEM, SEM, XRD, TG/DTA and PL measurements. The sphere size was controlled from 50 nm to 1 μm by adjusting the nucleation temperatures and molar ratio of Zn-EDTA to TAA. The emission intensity continuously increased with the increase of the particle size. When the ZnS microspheres were annealed at 550-800 °C, there were two specific emission bands with the centers at 454 nm and 510 nm, which were associated with the trapped luminescence arising from the surface states and the stoichiometric vacancies, respectively. When Cu2+ was introduced into ZnS microspheres, the dominant emission was red-shifted from 454 to 508 nm, fluorescence intensity also sharply increased. However, for the Mn2+-doped ZnS, the emission intensity was significantly enhanced without the shift of emission site.  相似文献   

5.
The lithium ion conducting solid polymer electrolytes (SPE) based on PVAc-LiClO4 of various compositions were prepared by solution casting technique. Structure and surface morphology characterization were studied by X-ray diffraction (XRD) analysis and scanning electron microscopy (SEM) measurements, respectively. Thermal and conductivity behavior of polymer-salt complexes were studied by employing differential scanning calorimetry (DSC) and ac impedance measurements, respectively. XRD and SEM analyses indicate the amorphous nature of the polymer-salt complexes. DSC measurements show decrease in Tg with the increase in LiClO4 concentrations. The bulk conductivity of the PVAc:LiClO4 polymer electrolytes was found to vary between 7.6×10−7 and 6.2×10−5 S cm−1 at 303 K with the increase in salt concentration. The temperature dependence of the polymer electrolyte complexes appear to obey Arrhenius law.  相似文献   

6.
Nanometer-scale TiO2 particles have been synthesized by sol-gel method. It was incorporated in a glass-based silica aerogel. The composite was characterized by various techniques such as particle size analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), X-ray diffraction (XRD), infrared spectroscopy (IR) and photoluminescence (PL). The bulk glass presents a strong luminescence at wavelengths ranging from 750 to 950 nm. This PL was attributed to various non-bridging oxygen hole centers (NBOHCs) defects resulting from thermal treatment and crystallization of TiO2 at the interface between titania nanoparticles and silica host matrix.  相似文献   

7.
A novel composite alkaline polymer electrolyte based on poly(vinyl alcohol) (PVA) polymer matrix, titanium dioxide (TiO2) ceramic fillers, KOH, and H2O was prepared by a solution casting method. The properties of PVA-TiO2-KOH alkaline polymer electrolyte films were studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and AC impedance techniques. DSC and XRD results showed that the domain of amorphous region in the PVA polymer matrix augmented when TiO2 filler was added. The SEM result showed that TiO2 particles dispersed into the PVA matrix although some TiO2 aggregates of several micrometers were formed. The alkaline polymer electrolyte showed excellent electrochemical properties. The room temperature (20 °C) ionic conductivity values of typical samples were between 0.102 and 0.171 S cm−1. The Zn-Ni secondary battery with the alkaline polymer electrolyte PVA-TiO2-KOH had excellent electrochemical property at the low charge-discharge rate.  相似文献   

8.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

9.
ZrAlN/ZrB2 multilayered superlattice coatings with modulation periods ranging from 20 nm to 60 nm were grown in magnetron sputtering chamber. X-ray diffraction (XRD), scanning electron microscopy (SEM) and nanoindention were employed to investigate the influence of modulation period on microstructure and mechanical properties of the multilayers. The sharp interfaces and nanoscale multilayered modulation were confirmed by SEM and XRD. The coating with modulation period of 40 nm and modulation ratio of 1:3 showed a marked polycrystalline structure with the strong mixture of ZrAlN (1 1 1), ZrB2 (0 0 1) and ZrB2 (1 0 1) textures. Meanwhile, it also possessed the highest hardness (36.4 GPa), elastic modulus (477 GPa), critical fracture load (76.48 mN), and lower residual stress, compared to those with other modulation periods and monolithic coatings.  相似文献   

10.
A periodically magnetic field (PMF) was used in a hot-filament chemical vapor deposited (HFCVD) for diamond growth on the rhenium substrate. The morphology, band structures and crystalline structure of the film were analyzed by the scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometer (XRD), respectively. The results show that the thickness of the diamond film is about 2900 nm by 4 h deposition with magnetic field-assisted. There is no interlayer between diamond film and the rhenium substrate. The result shows that the turn on voltage of the sample is enhanced from 3.3 to 2.6 V/μm with the PMF. Also the total emission current density at 6.2 V/μm increased from 6.3 to 21.5 μA/cm2.  相似文献   

11.
Rapid initiation of reactions in Al/Ni multilayers with nanoscale layering   总被引:3,自引:0,他引:3  
Research into nanoenergetic materials is enabling new capabilities for controlling exothermic reaction rates and energy output, as well as new methods for integrating these materials with conventional electronics fabrication techniques. Many reactions produce primarily heat, and in some cases it is desirable to increase the rate of heat release beyond what is typically observed. Here we investigate the Al-Ni intermetallic reaction, which normally propagates across films or foils at rates lower than 10 m/s. However, models and experiments indicate that local heating rates can be very high (107 K/s), and uniform heating of such a multilayer film can lead to a rapid, thermally explosive type of reaction. With the hopes of using a device to transduce electrical energy to kinetic energy of a flyer plate in the timescale of 100's of nanoseconds, we have incorporated a Ni/Al nanolayer film that locally heats upon application of a large electrical current. We observed flyer plate velocities in the 2-6 km/s range, corresponding to 4-36 kJ/g in terms of specific kinetic energy. Several samples containing Ni/Al films with different bilayer thicknesses were tested, and many produced additional kinetic energy in the 1.1-2.3 kJ/g range, as would be expected from the Ni-Al intermetallic reaction. These results provide evidence that nanoscale Ni/Al layers reacted in the timescale necessary to contribute to device output.  相似文献   

12.
Strontium and calcium-modified lead titanate (Pb0.70Ca0.15Sr0.15)TiO3 soft chemistry-derived thin films were prepared on platinum-coated silicon substrate by spin-coating method. Investigations were made on the structure, surface morphology and electrical properties of the film. The results by XRD and FE-SEM showed that the film exhibits a pure tetragonal perovskite phase and an average grain size of about 50-60 nm, respectively. Electrical measurements of a metal-ferroelectric-metal type capacitor exhibited a stable and switchable electrical polarization in the film. The structure of the Au/PCST/Pt capacitor showed well-saturated hysteresis loops at an applied voltage of 300 kV/cm with remanent polarization and coercive field values of 22 μC/cm2 and 100 kV/cm, respectively. At 100 kHz, the dielectric constant and the dielectric loss of the (Pb0.70Ca0.15Sr0.15)TiO3 thin film with thickness 240 nm were 528 and 0.05, respectively.  相似文献   

13.
PEO/LiCF3SO3 (LiTFS) /Ethylene carbonate (EC) polymer electrolyte membranes were prepared with a solution casting method followed by a hot pressing process. The effect of the hot pressing process on the in-plane conductivity of the PEO electrolyte membranes was evaluated using a four-electrode AC impedance method. The composition, morphology, and microstructure of the composite polymer electrolyte were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The AC impedance measurement results indicate that the hot pressing process can increase the room temperature conductivity of the membranes 14 times to 1.7 × 10− 3 S cm− 1 depending upon the duration of the hot pressing process. The SEM, FTIR, XRD, and DSC results indicate that the hot pressing process could increase the amorphous part of the polymer electrolyte membrane or convert large spherulite crystals into nano-sized crystals.  相似文献   

14.
This paper deals with the sol-gel elaboration and defects photoluminescence (PL) examination of Al2O3 nanocrystallites (size ∼30 nm) confined in glass based on silica aerogel. Aluminium oxide aerogels were synthesized using esterification reaction for hydrolysis of the precursor and supercritical conditions of ethyl alcohol for drying. The obtained nanopowder was incorporated in SiO2 host matrix. After heating under natural atmosphere at 1150 °C for 2 h, the composite Al2O3/SiO2 (AS) exhibited a strong PL bands at 400-600 and 700-900 nm in 78-300 K temperature range. PL excitation (PLE) measurements show different origins of the emission. It was suggested that OH-related radiative centres and non-bridging oxygen hole centres (NBOHCs) were responsible for the bands at 400-600 and 700-900 nm, respectively.  相似文献   

15.
Zinc oxide (ZnO) and aluminium-doped zinc oxide (ZnO:Al) thin films were prepared by RF diode sputtering at varying deposition conditions. The effects of negative bias voltage and RF power on structural and optical properties were investigated. X-ray diffraction measurements (XRD) confirmed that both un-doped and Al-doped ZnO films are polycrystalline and have hexagonal wurtzite structure. The preferential 〈0 0 1〉 orientation and surface roughness evaluated by AFM measurements showed dependence on applied bias voltage and RF power. The sputtered ZnO and ZnO:Al films had high optical transmittance (>90%) in the wavelength range of 400-800 nm, which was not influenced by bias voltage and RF power. ZnO:Al were conductive and highly transparent. Optical band gap of un-doped and Al-doped ZnO thin films depended on negative bias and RF power and in both cases showed tendency to narrowing.  相似文献   

16.
Perovskite strontium stannate (SrSnO3) nanorods were prepared by annealing the precursor SnSr(OH)6 nanorods at 600 °C for 3 h. The precursor nanorods were hydrothermally synthesized at 160 °C for 16 h using Sr(NO3)2 and SnCl4·5H2O as starting materials in the presence of surfactant cetyltrimethyl ammonium bromide (CTAB). As-prepared samples were characterized by X-ray diffraction (XRD), thermogravimetric-differential thermal analysis (TG-DTA), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and infrared ray spectroscopy (IR). The results show that the as-synthesized powders are made of SrSnO3 one-dimensional nanorods of about 0.2-1 μm length and 100-150 nm diameter. Possible formation mechanism of SrSnO3 with nanorod structure under certain conditions was preliminarily analyzed, in which it was thought that CTAB played an important role in the formation process of the nanorod structure. Electrochemical performance of the samples versus Li metal was also evaluated for possible use in lithium-ion batteries.  相似文献   

17.
Tb3+:NaGd(WO4)2 (Tb:NGW) phosphors with different Tb3+ concentrations have been synthesized by a mild hydrothermal process directly without further sintering treatment. X-ray diffraction (XRD), scanning electron microscope (SEM), photoluminescence excitation and emission spectra and decay curve were used to characterize the Tb:NGW phosphors. XRD analysis confirmed the formation of NGW with scheelite structure. SEM study showed that the obtained Tb:NGW phosphors appeared to be nearly spherical and their sizes ranged from 1 to 1.5 μm. The excitation spectra of these systems showed an intense broad band with maximum at 270 nm related to the O→W ligand-to-metal charge-transfer state. Photoluminescence spectra indicated the phosphors emitted strong green light centered at 545 nm under UV light excitation. Analysis of the photoluminescence spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for Tb3+ is about 15 at% of Tb3+ ions in Tb:NGW phosphors.  相似文献   

18.
Cu2SnS3 (CTS) powder has been synthesized at 200 °C by solid state reaction of pastes consisting of Cu and Sn salts and different sulphur compounds in air. The compositions of the products is elucidated from XRD and only thiourea is found to yield CTS without any unwanted CuSx or SnSy. Rietveld analysis of Cu2SnS3 is carried out to determine the structure parameters. XPS shows that Cu and Sn are in oxidation states +1 and +4, respectively. Morphology of powder as revealed by SEM shows the powder to be polycrystalline with porous structure. The band gap of CTS powder is found to be 1.1 eV from diffuse reflectance spectroscopy. Cu2SnS3 pellets are p-type with electrical conductivity of 10−2 S/cm. The thermal degradation and metal–ligand coordination in CTS precursor are studied with TGA/DSC and FT-IR, respectively, and a probable mechanism of formation of CTS has been suggested.  相似文献   

19.
We report a study on the SHI induced modifications on structural and optical properties of ZnO/PMMA nanocomposite films. The ZnO nanoparticles were synthesized by the chemical route using 2-mercaptoethanol as a capping agent. The structure of ZnO nanoparticles was confirmed by XRD, SEM and TEM. These ZnO nanoparticles were dispersed in the PMMA matrix to form ZnO/PMMA nanocomposite films by the solution cast method. These ZnO/PMMA nanocomposite films were then irradiated by swift heavy ion irradiation (Ni8+ ion beam, 100 MeV) at a fluence of 1×1011 ions/cm2. The nanocomposite films were then characterized by XRD, UV-vis absorption spectroscopy and photoluminescence spectroscopy. As revealed from the absorption spectra, absorption edge is not changed by the irradiation but the optical absorption is increased. Enhanced green luminescence at about 527 nm and a less intense blue emission peak around 460 nm were observed after irradiation with respect to the pristine ZnO/PMMA nanocomposite film.  相似文献   

20.
Needle-like SrAl2O4:Eu2+, Dy3+ phosphors had been prepared by calcining the precursors obtained from hydrothermal process at the temperature of 1100 °C in a weak reductive atmosphere of active carbon. The crystal structure, morphology and optical properties of the composites were characterized. X-ray diffraction (XRD) patterns illustrated that the single-phase SrAl2O4 was formed at 1100 °C, which is much lower than that prepared by the traditional method. The transmission electron microscope (TEM) observation revealed the precursors and the resulted SrAl2O4:Eu2+, Dy3+ phosphors had well-dispersed distribution and needle-like morphology with an average diameter about 150 nm at the center and the length up to 1 μm. After irradiation by ultraviolet radiation with 350 nm for 5 min, the phosphors emit green color long-lasting phosphorescence corresponding to the typical emission of Eu2+ ion, both the PL spectra and luminance decay revealed that the phosphors had efficient luminescent and long lasting properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号