首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
选用四种不同的分子筛(SAPO-34, ZSM-5, Y, MCM-41)与CuCoMn(高醇合成组元)构成双功能催化剂,利用N2吸脱附、H2-TPR、XRD、NH3-TPD等表征了催化剂的结构性质. 研究了催化剂在生物质基合成气一段法制取液态烃燃料的应用. 相比于CuCoMn催化剂,加入分子筛的双功能催化剂均不同程度地提高了液体烃燃料的选择性及收率,且收率按顺序递减呈CCM-ZSM-5>CCM-SAPO-34>CCM-Y>CCM-MCM-41. 同时,共沉淀法制备的CuCoMn-ZSM-5 (20wt%, Si/Al=100) 具有最佳的CO转化率(76%)及液体产物收率(30%). 相比于CuCoMn氧化物,双功能催化剂的比表面及孔容均得到提高. CCM-ZSM-5具有适中的微孔尺寸和中等强度的酸性,增加CCM-ZSM-5中ZSM-5含量或降低ZSM-5中的Si/Al比,均有利于提高酸性位的数量,主要是较弱的酸性位. 而共沉淀法制备的CCM-ZSM-5具有更好的金属分散性及还原性能.  相似文献   

2.
A series of ZSM-5 zeolites were synthesized by adding triethoxyphenylsilane (PTEOS) into the initial sol of the synthesis system. The samples were studied by XRD, SEM, N2 adsorption-desorption and acid assessment of d3-acetonitrile adsorption. Characterization results showed that the crystal size of the ZSM-5 zeolites could be adjusted in a certain range by introducing different contents of PTEOS. Besides, the resultant materials possess hierarchical porosity in addition to those micropores generated by the MFI channels. Moreover, supported Mo/ZSM-5 catalysts were prepared, and their catalytic performances were investigated in the methane non-oxidative aromatization. It was found that the Mo/ZSM-5 catalyst, bearing suitable crystal size and mesoporous characteristic showed relatively high shape-selectivity to benzene and high stability for the reaction of methane aromatization.  相似文献   

3.
The influence of ultrasound-assisted rapid hydrothermal synthesis of aluminosilicate ZSM-5 catalysts was examined in this work. A series of MFI-type nanostructured materials with sonochemical approach and conventional heating were synthesized and evaluated for conversion of methanol to propylene reaction. The prepared samples were tested by characterization analyses such as XRD, FESEM, BET-BJH, FTIR, TPD-NH3 and TG/DTG. The obtained results confirmed that ultrasound treatment enhanced the nucleation process and crystal growth for ZSM-5 sample synthesized at moderate temperature of 250 °C. Therefore, it was found the formation of pure MFI zeolite with high crystallinity and improved textural, structural and acidic properties for ZSM-5(UH-250) sample compared with the other zeolites. This observation was attributed to the relationship between the perfect crystallization mechanism and catalytic properties, which led to producing an efficient MFI zeolite toward the optimal catalytic performance. In this manner, the methanol conversion and products selectivity of prepared materials were carried out in MTP reaction at 460 °C and atmospheric pressure. The ZSM-5(UH-250) zeolite with slower deactivation regime exhibited the constant level of methanol conversion (84%) and high propylene selectivity (78%) after 2100 min time on stream. Moreover, the synthesis pathway for MFI zeolite at moderate temperature and also deactivation mechanism of improved sample were proposed.  相似文献   

4.
研究了用一系列不同类型的分子筛催化剂催化转化制取低碳烯烃的过程,测试的催化剂包括HZSM-5、MCM-41、SAPO- 34和Y型分子筛.按照低碳烯烃的绝对收率和选择性,催化剂的活性排序为:HZSM-5>SAPO-34>MCM-41>Y型分子筛.研究表明,使用HZSM-5分子筛催化剂,获得的生物油最大低碳烯烃收率约为0.22 kg/(kg生物油),低碳烯烃的选择性约为50%,且生物油几乎实现完全转化.同时还研究了反应条件对生物油制低碳烯烃的影响.为了弄清催化剂结构与和低碳烯烃形成之间的关系,对相关催化剂进行了详细表征,对生物油热裂解和催化裂解过程进行了详细比较.  相似文献   

5.
Two series of Fe-K catalysts for dehydrogenation of ethylbenzene to styrene were prepared with different amounts and different compounds of the additional element Ce. M?ssbauer spectroscopy has been used to determine the Fe compound in the catalyst and to investigate the effect of Ce. The catalytic properties of the catalysts have also been measured. The results show that the element Ce in the catalyst is favorable to form the predecessor of the catalytic active phase, the compound KFe11O17 and that the optimal percentage of CeO2 is 8%~15% in the catalyst which is favorable to the formation of KFe11O17 and to get better catalytic properties.  相似文献   

6.
采用液态离子交换法制备了不同负载量的镍改性ZSM-5分子筛催化剂,并考察了上述催化剂的微观结构和物理化学特性及其在NH3-SCR反应中的催化性能。结果表明:在负载量<10.9%时镍在分子筛中具有高度的分散性,而随着镍负载量的进一步增加,分子筛表面开始出现较大的NiO颗粒;镍元素只以+2价存在于分子筛催化剂中;在NH3-SCR反应中,镍负载量低于14.9%时,增加镍负载量将提高催化剂的低温活性;当反应温度超过300℃时,高温催化中心开始起作用,但随镍负载量的增加,高温活性开始下降时的温度逐渐降低。  相似文献   

7.
Four NiMo catalyst supported on Al2O3 with different textural properties have been studied in the hydrodesulfurization (HDS), hydrodenitrogenation (HDN) and hydrodearomatization (HDA) of a Mexican straight run gasoil (SRGO). All reactions were carried out at three different temperatures 613, 633, and 653 K. Alumina supports were analysed by pyridine FTIR-TPD and nitrogen physisorption in order to determine their surface acidity and textural properties, respectively. TPR studies of the NiMo catalysts were analysed to correlate their hydrogenating properties. Metallic particles were characterized (after sulfidation) using transmission electron microscopy (TEM). Catalytic activities are discussed in relation to the physicochemical properties of NiMo catalysts. The importance of textural properties on coke deposition has been emphasized. The results of catalytic activity of these materials varied depending on dispersed MoS particles and pore distribution in final catalysts. The optimum pore diameter was found around 80 Å for HDS and HDN.  相似文献   

8.
采用超声处理辅助浸渍法制备了多壁碳纳米管负载的Cu-Co复合氧化物催化剂. 利用XRD、TEM、H2-TPR、XPS和Raman光谱等表征了催化剂的结构性质. 在Cu和Co氧化物以及金属氧化物与碳纳米管载体间存在强相互作用. 催化剂在富氢气氛中CO催化消除反应中,与单一Cu或Co催化剂相比,Cu-Co复合氧化物催化剂表现出独特的反应特性,特别是在较高反应温度下可同时结合CO优先氧化和CO甲烷化的反应途径来实现高效CO消除. 当Cu/Co比为1/8时活性最优,可以实现在150~250 o和高反应空速 (120 L/(h·g))富氢气氛中CO的完全消除.  相似文献   

9.
Influence of preparation methods and ultrasound irradiation on physico-chemical and catalytic properties was investigated by synthesizing Pt-ZSM-5 and Pt-Beta catalysts by in-situ and impregnation methods and applying ultrasound irradiation to synthesis gel mixture of ZSM-5 and Beta zeolites. It was concluded from the X-ray powder diffraction patterns of Pt-ZSM-5 and Pt-Beta zeolite catalysts that introduction of Pt by in-situ method and ultrasound irradiation did not influence the structures of ZSM-5 and Beta zeolites. Morphology of ZSM-5 and Beta zeolites were investigated by scanning electron microscopy. SEM micrographs showed that the Pt-ZSM-5-IS-US catalyst synthesized by in-situ method with ultrasound irradiation resulted in smaller crystals of ZSM-5 than Pt-ZSM-5-IS catalyst prepared without ultrasound irradiation. Furthermore SEM micrographs of Pt-Beta-11-IS-US zeolite synthesized using ultrasound irradiation showed much smaller crystals than Pt-Beta-11-IM indicating that ultrasound irradiation had a significant effect on the morphology of Beta zeolite. Conversion of n-pentane and selectivity to iso-pentane over the Pt-ZSM-5-IS-US zeolite catalysts prepared by ultrasound irradiation during in-situ introduction of platinum was higher than the catalysts prepared without the ultrasound irradiation. Furthermore ultrasound irradiated and in-situ synthesized Pt-Beta-11-IS-US catalyst also showed higher selectivity to iso-pentane than Pt-H-Beta-11-IM prepared by impregnation method.  相似文献   

10.
《Composite Interfaces》2013,20(2):153-167
The selective oxidation of methane to formaldehyde has been investigated over a series of Zr-Mo-oxide catalysts. Comparative characterization of these catalysts has been carried out by BET specific surface area (BET), X-ray diffraction (XRD), laser Raman spectroscopy (LRS), temperature programmed reduction of hydrogen (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The Zr-Mo-oxide catalyst with 12 wt% Mo is found to be highly selective and yields formaldehyde by selective oxidation of methane. The interaction between Mo and Zr induces changes of physicochemical properties such as structure, crystal size, reducible properties, charge of ion and molybdenum oxide species etc., which in turn determines the catalytic performance. These effects are a function of Mo content. Zr(MoO4)2in these catalysts might be responsible for selective oxidation of methane to formaldehyde.  相似文献   

11.
A series of carbon nanotubes-supported K-Co-Mo catalysts were prepared by a sol-gel method combined with incipient wetness impregnation.The catalyst structures were characterized by X-ray diffraction,N2 adsorption-desorption,transmission electron microscopy and H2-TPD,and its catalytic performance toward the synthesis of higher alcohols from syngas was investigated.The as-prepared catalyst particles had a low crystallization degree and high dispersion on the outer and inner surface of CNTs.The uniform mesoporous structure of CNTs increased the diffusion rate of reactants and products,thus promoting the reaction conversion.Furthermore,the incorporation of CNTs support led to a high capability of hydrogen absorption and spillover and promoted the formation of alkyl group,which served as the key intermediate for the alcohol formation and carbon chain growth.Benefiting from these characteristics,the CNTs supported Mo-based catalyst showed the excellent catalytic performance for the higher alcohols synthesis as compared to the unsupported catalyst and activated carbon supported catalyst.  相似文献   

12.
Historically the interest in the catalytic properties of transition metal carbides (TMC) has been inspired by their “Pt-like” properties in the transformation reactions of hydrocarbon molecules. Recent studies, however, have revealed that the reaction pathways of oxygen-containing molecules are significantly different between TMCs and Pt-group metals. Nonetheless, TMCs demonstrate intriguing catalytic properties toward oxygen-containing molecules, either as the catalyst or as the catalytically active substrate to support metal catalysts, in several important catalytic and electrocatalytic applications, including water electrolysis, alcohol electrooxidation, biomass conversion, and water gas shift reactions. In the current review we provide a summary of theoretical and experimental studies of the interaction of TMC surfaces with oxygen-containing molecules, including both inorganic (O2, H2O, CO and CO2) and organic (alcohols, aldehydes, acids and esters) molecules. We will discuss the general trends in the reaction pathways, as well as future research opportunities in surface science studies that would facilitate the utilization of TMCs as catalysts and electrocatalysts.  相似文献   

13.
利用浸渍方法制备的Ni/HZSM-5催化剂在生物油低温水蒸汽重整合成中表现了较高的催化活性. 探讨了催化剂的组成、重整温度、水碳比例对重整过程的影响.在电催化重整研究中,发现催化剂上通过的电流可以显著地促进生物油水蒸汽重整.通过对不同负载量的Ni/HZSM-5催化剂和Ni20/Al2O3催化剂的催化活性的比较,NiO在催化剂中负载量为20%(Ni20/ZSM)时表现出了最高的催化活性; 即使在450 oC时, 在Ni20/ZSM催化剂上也可以达到碳转化率接近完全, 氢气产率约为90%的效果. 利用XRD、ICP/AES、H2-TPR、BET等表征手段对Ni/HZSM-5催化剂的形态和结构进行了表征.  相似文献   

14.
本文对纤维素和甲醇在不同金属氧化物改性的ZSM5催化剂作用下共催化快速热解实现一步制备可再生对二甲苯的过程进行了研究. 结果表明,镧改性的ZSM5催化剂是生产生物基对二甲苯的有效催化剂. 对二甲苯的选择性和产率主要由催化剂酸性、反应温度和甲醇含量决定. 在20%La2O3-ZSM5(80)催化剂作用下,纤维素与33wt%甲醇共催化快速热解获得对二甲苯的最高收率和对二甲苯/二甲苯的最高比率分别为14.5 C-mol%和86.8%. 本文详细研究了催化热解过程中催化剂的失活,基于产物的分析和催化剂的表征提出了由纤维素制备对二甲苯的可能反应途径.  相似文献   

15.
ZSM-5/MCM-41 micro/mesoporous composite materials were synthesized by the hydrothermal technique with alkali-treated ZSM-5 zeolite as source of silica and aluminum and characterized by various physico-chemical techniques such as X-ray diffraction (XRD), nitrogen sorption at 77 K, transmission electronic microscopy (TEM), FTIR spectroscopy and NH3 temperature programmed desorption (TPD) techniques. The effect of concentration of CTAB in the synthesis of these solids has been investigated, the mesopore volume, surface area and surface acidity decrease with increasing the concentration of CTAB. Increasing the CTAB concentration causes the recrystallization of zeolite ZSM-5 and it disadvantage the formation of mesoporous materials MCM-41. The catalytic activity of ZSM-5/MCM-41 materials has been evaluated in the Friedel–Crafts acylation of anisole with benzoyl chloride as alkylating agent. The results revealed the reaction to be influenced by surface area, pore volume and surface acidity.  相似文献   

16.
The catalytic activity of samples such as PPy(H4SiW12O40), PPy(H5PMo10V2O40), PPy(H2Fe(III)PMo10V2O40), PPy(H3Cu(II)PMo10V2O40) has been examined in two different test reactions. The acid-base and oxidation-reduction properties were studied using the conversion of isopropyl alcohol to propene and acetone. Redox ability of catalysts was examined in the reaction of oxidation of allyl alcohol to glycidol. It was found that the activity of catalysts in the oxidation of allyl alcohol increases as the oxidation properties determined from the conversion of isopropyl alcohol increase. It was also observed that stronger oxidation-reduction properties of the catalyst result in a high rate of the consecutive reaction of glycidol to 3-hydroxypropanone.The phase composition of catalysts was determined by means of X-ray diffraction (XRD).  相似文献   

17.
The effects of transition metals (Cr, Mn, Fe, Co and Ni) on the catalytic properties of Pd/Ce-Zr/Al2O3 catalyst for methane combustion have been investigated. The supported Pd catalysts are characterized by BET, XRD, TEM, TPR, TPO and TPSR measurements. Activity tests in methane combustion show that Pd/Ce-Zr-Ni/Al2O3 has the highest catalytic activity and thermal stability among all catalysts. The results of TEM show that the addition of Ni to Pd/Ce-Zr/Al2O3 increases the dispersion of Pd component and inhibits the site growth. The results of TPO and TPSR show that the addition of Ni inhibits the decomposition of PdO particles and improves the reduction-reoxidation properties of the active PdO species, which increases the catalytic activity and thermal stability of the Pd/Ce-Zr/Al2O3 catalyst.  相似文献   

18.
《Current Applied Physics》2015,15(9):993-999
Pt-transition metal alloy catalysts with an active Pt surface have exceptional properties for use in oxygen electro-reduction reactions in fuel cells. Herein, we report the simple synthesis of dealloyed PtCu catalysts and their catalytic performance in oxygen reduction. The dealloyed PtCu catalysts consisted of a Pt-enriched shell with a Pt–Cu alloy core and were synthesized through a chemical co-reduction process followed by thermal annealing and chemical dealloying. During synthesis, thermal annealing leads to a high degree of formation of PtCu alloy particles (e.g., PtCu or PtCu3), and chemical dealloying causes selective dissolution of unstable Cu species from the surface layers of the PtCu alloy particles, resulting in a PtCu alloy@Pt-enriched surface core–shell configuration. Our PtCu3/C catalyst exhibits a great improvement in the oxygen reduction reaction with a mass activity of 0.501 A/mgPt, which is 2.24 times greater than that of a commercial Pt catalyst. In this article, the synthesis details, characteristics and performance improvements in ORR of chemically dealloyed PtCu catalysts are systemically explained.  相似文献   

19.
Rod-like and particle-like La2O2CO3 and La2O3 were obtained via morphology-preserved thermal transformation of the La(OH)3 precursors. La2O2CO3- and La2O3-supported Pt catalysts were prepared by impregnation method and tested in the liquid-phase crotonaldehyde hydrogenation reaction. The textural and physicochemical properties of the samples were studied by a series of techniques including XRD, TG-DSC, N2 adsorption–desorption, TEM and HRTEM, IR spectrum, H2-TPD, and H2-TPR. Even after 600 °C reduction, Pt particles of about 0.8–2.8 nm interplayed with support surface to form Pt-doped interface, thereby preventing the catalysts from migration and affording a high dispersion of platinum. The specific exposed crystal-facets and surface oxygen species depending on the shape of the support affected the preferential deposition of Pt species and the metal-support interaction. Thus, Pt catalysts performed different physicochemical properties and catalytic performance relying on the morphology and structure of the supports. During the cycle experiment, severe deactivation was observed for NP-supported catalysts with an increased selectivity due to the aggregation and growth of Pt particles. Meantime, the NR-supported catalysts retained relatively high reactivity as a consequence of the crystal-facet confinement of rod-shaped lanthanum supports.  相似文献   

20.
Steam methane reforming is a very important chemical process in hydrogen production and solid oxide fuel cells (SOFCs). Cobalt (Co) is an important catalyst for dry and steam methane reforming. However, previous studies have confirmed that metal Co surfaces only have weak adsorption activity for H2O, which is evidently unfavorable for steam reforming. In this work we used first-principles simulations to study the activity of MnO–Co catalysts for the adsorption of H2O. Compared with the Co (111) surface and pristine Co clusters, the MnO–Co catalytic layer has a stronger adsorption capability for H2O because of the introduction of the MnO substrate, which is crucial for improving the steam reforming reaction and inhibiting carbon disposition in SOFCs. The cooperation mechanism between MnO and Co is discussed based on the analysis of electronic structures. The conclusions from this work are universal for other metal-oxide composite catalyst layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号