首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
3‐Acryloxypropylhepta(3,3,3‐trifluoropropyl) polyhedral oligomeric silsesquioxane (POSS) was synthesized and used as a modifier to improve the thermal response rates of poly(N‐isopropylacrylamide) (PNIPAM) hydrogel. The radical copolymerization among N‐isopropylacrylamide (NIPAM), the POSS macromer and N,N′‐methylenebisacrylamide was performed to prepare the POSS‐containing PNIPAM cross‐linked networks. Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) showed that the POSS‐containing PNIPAM networks displayed the enhanced glass transition temperatures (Tg's) and improved thermal stability when compared with plain PNIPAM network. The POSS‐containing PNIPAM hydrogels exhibited temperature‐responsive behavior as the plain PNIPAM hydrogels. It is noted that with the moderate contents of POSS, the POSS‐containing PNIPAM hydrogels displayed much faster response rates in terms of swelling, deswelling, and re‐swelling experiments than plain PNIPAM hydrogel. The improved thermoresponsive properties of hydrogels have been interpreted on the basis of the formation of the specific microphase‐separated morphology in the hydrogels, that is, the POSS structural units in the hybrid hydrogels were self‐assembled into the highly hydrophobic nanodomains, which behave as the microporogens and promote the contact of PNIPAM chains and water. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 504–516, 2009  相似文献   

2.
Stimuli‐responsive bioconjugated hydrogels that can respond to a target antigen (antigen‐responsive hydrogels) were prepared by introducing antigen‐antibody bindings as reversible crosslinks into the gel networks. The preparation conditions of the antigen‐responsive hydrogels and the mechanism of the antigen‐responsive behavior were investigated, focusing on bioconjugated hydrogel structures. This article also focuses on the effect of semi‐interpenetrating polymer network (semi‐IPN) structures on the antigen‐responsive swelling/shrinking behavior of bioconjugated hydrogels with antigen‐antibody bindings. The preparation conditions and the network structures of the bioconjugated hydrogels are discussed in relation to designing antigen‐responsive hydrogels. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 2144–2157, 2009  相似文献   

3.
Degradable hydrogels crosslinked with disulfide bonds were prepared by Michael addition between amine groups of branched polyethylenimine and carbon–carbon double bonds of N,N′‐bis(acryloyl)cystamine. The influences of the chemical composition of the resulted hydrogels on their properties were examined in terms of morphology, surface area, swelling kinetics, and degradation. The hydrogels were uniformly crosslinked and degraded into water‐soluble polymers in the presence of the reducing agent of dithiothreitol, which improved the control over the release of encapsulated drug. The degradation of hydrogels can trigger the release of encapsulated molecules, as well as facilitate the removal of empty vehicles. Results obtained from in vitro drug release suggested that the disulfide crosslinked hydrogels exhibited an accelerated release of encapsulated drug in dithiothreitol‐containing PBS buffer solution. Moreover, the drug release rate decreased gradually with increasing crosslinking density. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4074–4082, 2009  相似文献   

4.
Poly(vinyl alcohol) hydrogels were alternately immersed in aqueous solutions of oppositely charged polymers. The adsorption of the cationic dye methylene blue to the immersed hydrogels suggested the presence of a coating on the hydrogel surfaces. Static contact angles with an air bubble in water showed layer‐by‐layer growth of the films. The films could be transferred onto solid substrates for mechanical strength after the hydrogels were placed on the solid substrates, and this resulted in an estimation of the film thickness. The number of assembly steps could regulate the film thickness. We present here coatings of hydrogels with thin polymer films prepared by layer‐by‐layer assembly. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1062–1067, 2005  相似文献   

5.
A family of L-lysine-based low-molecular-weight compounds with various positively charged terminals (pyridinium and imidazolium derivatives) was synthesized and its gelation behavior in water was investigated. Most of the compounds can be very easily synthesized in high yields (total yields >90 %), and they function as excellent hydrogelators that form hydrogels below 1 wt %; particularly, N(epsilon)-lauroyl-N(alpha)-[11-(4-tert-butylpyridinium)undecanoyl]-L-lysine ethyl ester (2 c) and N(epsilon)-lauroyl-N(alpha)-[11-(4-phenylpyridinium)undecanoyl]-L-lysine ethyl ester (2 d), which are able to gel water at concentration of only 0.2 wt %. This corresponds to a gelator molecule that entraps more than 20 000 water molecules. All hydrogels are very stable and maintain the gel state for at least 9 months. TEM observations demonstrated that these hydrogelators self-assemble into a nanoscaled fibrous structure; a three-dimensional network is then formed by the entanglement of the nanofibers. An FTIR study in [D(6)]DMSO/D(2)O and in CHCl(3) revealed the existence of intermolecular hydrogen bonding between the amide groups. This was further supported by a (1)H NMR study in [D(6)]DMSO/H(2)O. A luminescence study, in which ANS (1-anilino-8-naphtharenesulfonic acid) was used as a probe, indicated that the hydrogelators self-assemble into nanostructures possessing hydrophobic pockets at a very low concentration. Consequently, it was found that the driving forces for self-assembly into a nanofiber are hydrogel bonding and hydrophobic interactions.  相似文献   

6.
A new approach to achieve polymer‐mediated gold ferromagnetic nanocomposites in a polyhedral oligomeric silsesquioxane (POSS)‐containing random copolymer matrix has been developed. Stable and narrow distributed gold nanoparticles modified by 3‐mercaptopropylisobutyl POSS to form Au‐POSS nanoparticles are prepared by two‐phase liquid‐liquid method. These Au‐POSS nanoparticles form partial particle aggregation by blending with poly(n‐butyl methacrylate) (PnBMA) homopolymer because of poor miscibility between Au‐POSS and PnBMA polymer matrix. The incorporation the POSS moiety into the PnBMA main chain as a random copolymer matrix displays well‐dispersed gold nanoparticles because the POSS‐POSS interaction enhances miscibility between gold nanoparticles and the PnBMA‐POSS copolymer matrix. This gold‐containing nanocomposite exhibits ferromagnetic phenomenon at room temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 811–819, 2009  相似文献   

7.
To combine the advantages of a biopolymer with hydrotalcite in an enzyme immobilization system, the intercalation polymerization was used to prepare poly(acrylic acid‐co‐acrylamide)/hydrotalcite (PAA‐AAm/HT) nanocomposite hydrogels using sodium methyl allyl sulfonate as intercalation agent. Transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy results revealed that sodium methyl allyl sulfonate chains entered into the interlayer of HT, the interaction between them has taken place, and HT was dramatically exfoliated into nanoscale and homogeneously dispersed in the PAA‐AAm matrix. Transmission electron microscopy and cryo scanning electron microscope results showed that dried hydrogels were regular spherical particles, and swollen hydrogels revealed homogeneous porous network structures. Then, PAA‐AAm/HT nanocomposite hydrogels were used to immobilize carbonic anhydrase (CA), and the CO2 hydration activities of free enzyme and immobilized enzyme were evaluated. Results showed that immobilized CA retained the majority of the enzyme activity. The reason may be the formation of a microenvironment almost all of which is composed of free water inside the porous network structures. Therefore, the immobilized CA is of great potential in the removal of trace CO2 from the closed spaces. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3232–3240, 2009  相似文献   

8.
The low solubility of carbon nanostructures (CNs) in water and the need of ordered architectures at the nanoscale level are two major challenges for materials chemistry. Here we report that a novel amino acid based low‐molecular‐weight gelator (LMWG) can be used to effectively disperse pristine CNs in water and to drive their ordered self‐assembly into supramolecular hydrogels. A non‐covalent mechanochemical approach has been used, so the π‐extended system of the CNs remains intact. Optical spectroscopy and electron microscopy confirmed the effective dispersion of the CNs in water. Electron microscopy of the hydrogels showed the formation of an ordered, LMWG‐assisted, self‐assembled architecture. Moreover, the very same strategy allows the solubilization and self‐assembly in water of a variety of hydrophobic molecules.  相似文献   

9.
An amphiphilic dendron containing three dendrite L-glutamic acid units and a long alkyl chain was synthesized by a convergent method. It was found that the dendron could form hydrogels over a wide pH range from 2 to 13. Moreover, accompanying the pH change, the compounds self-assembled into various chiral structures: from helical nanotube, helical nanotube with a string of beads, and coiled superhelix to dendrite nanostructures, such as pine, feather, etc. A series of characterizations based on TEM observations, X-ray diffraction and FTIR spectroscopic measurements revealed that the dendron formed a bilayer first and then hierarchically self-assembled into various chiral nanostructures. The four carboxylic acid groups and three amide groups played an important role in the self-assembly. The interaction between the multiamide groups stabilized the bilayer structures, whereas the ionization degree of the carboxylic acids was responsible for the formation of various chiral structures. The work presented a hydrogel system with wide pH adaptability and showed the regulation on chiral structures by simple pH variations.  相似文献   

10.
Supramolecular hydrogels are a class of self‐assembled network structures formed via non‐covalent interactions of the hydrogelators. These hydrogels capable of responding to external stimuli are considered to be smart materials due to their ability to undergo sol–gel and/or gel–sol transition upon subtle changes in their surroundings. Such stimuli‐responsive hydrogels are intriguing biomaterials with applications in tissue engineering, delivery of cells and drugs, modulating tissue environment to promote innate tissue repair, and imaging for medical diagnostics among others. This review summarizes the recent developments in stimuli‐responsive supramolecular hydrogels and their potential applications in regenerative medicine. Specifically, various structural aspects of supramolecular hydrogelators involved in self‐assembly, the role of external stimuli in tuning/controlling their phase transitions, and how these functions could be harnessed to advance applications in regenerative medicine are focused on. Finally, the key challenges and future prospects for these versatile materials are briefly described.  相似文献   

11.
Soft nanotechnology with soft nanoparticles   总被引:9,自引:0,他引:9  
The last decade of research in the physical sciences has seen a dramatic increase in the study of nanoscale materials. Today, "nanoscience" has emerged as a multidisciplinary effort, wherein obtaining a fundamental understanding of the optical, electrical, magnetic, and mechanical properties of nanostructures promises to deliver the next generation of functional materials for a wide range of applications. While this range of efforts is extremely broad, much of the work has focused on "hard" materials, such as Buckyballs, carbon nanotubes, metals, semiconductors, and organic or inorganic dielectrics. Meanwhile, the soft materials of current interest typically include conducting or emissive polymers for "plastic electronics" applications. Despite the continued interest in these established areas of nanoscience, new classes of soft nanomaterials are being developed from more traditional polymeric constructs. Specifically, nanostructured hydrogels are emerging as a promising group of materials for multiple biotechnology applications as the need for advanced materials in the post-genomic era grows. This review will present some of the recent advances in the marriage between water-swellable networks and nanoscience.  相似文献   

12.
Developing simple methods to organize nanoscale building blocks into ordered superstructures is a crucial step toward the practical development of nanotechnology. Bottom‐up nanotechnology using self‐assembly bridges the molecular and macroscopic, and can provide unique material properties, different from the isotropic characteristics of common substances. In this study, a new class of supramolecular hydrogels comprising 40 nm thick linear polymer layers sandwiched between nanolayers of self‐assembled amphiphilic molecules are prepared and studied by nuclear magnetic resonance spectroscopy, scanning electronic microscopy, small angle X‐ray diffraction, and rheometry. The amphiphilic molecules spontaneously self‐assemble into bilayer membranes when they are in liquid‐crystal state. The hydrogen bonds at the interface of the nanolayers and linear polymers serve as junctions to stabilize the network. These hydrogels with layered structure are facile to prepare, mechanically stable, and with unique temperature‐dependent optical transparency, which makes it interesting in applications, such as soft biological membranes, drug release, and optical filters.

  相似文献   


13.
The self-assembly of guanosine-5'-hydrazide G-1 in D(2)O, in the presence and absence of sodium cations, has been investigated by chiroptical techniques: electronic (ECD) and the newly introduced vibrational (VCD) circular dichroism spectroscopy. Using a combination of ECD and VCD with other methods such as IR, electron microscopy, and electrospray ionization mass spectrometry (ESI-MS) it was found that G-1 produces long-range chiral aggregates consisting of G-quartets, (G-1)(4), subsequently stacked into columns, [(G-1)(4)](n), induced by binding of metal cations between the (G-1)(4) species. This process, accompanied by gelation of the sample, is highly efficient in the presence of an excess of sodium cations, leading to aggregates with strong quartet-quartet interaction. Thermally induced conformational changes and conformational stability of guanosine-5'-hydrazide assemblies were studied by chiroptical techniques and the melting temperature of the hydrogels formed was obtained. The temperature-dependent experiments indicate that the long-range supramolecular aggregates are dissociated by increasing temperature into less ordered species, monomers, or other intermediates in equilibrium, as indicated by MS experiments.  相似文献   

14.
In this work, a series of biodegradable and pH‐responsive hydrogels based on polyphosphoester and poly(acrylic acid) are presented. A novel biodegradable macrocrosslinker α‐methacryloyloxyethyl ω‐acryloyl poly(ethyl ethylene phosphate) (HEMA‐PEOP‐Ac) was synthesized by first ring‐opening polymerization of the cyclic monomer 2‐ethoxy‐2‐oxo‐1,3,2‐dioxaphospholane using HEMA as the initiator and Sn(Oct)2 as catalyst, and subsequent conversion of hydroxyl into vinyl group. The hydrogels were then fabricated by the copolymerization of the macromonomer with acrylic acid, and their swelling/deswelling and degradation behaviors were investigated. The results demonstrated that the crosslinking density and pH values of media strongly influenced both the swelling ratio and the degradation rate of the hydrogels. The rheological properties of these hydrogels were also studied from which the storage modulus (G′) showed clear dependence on the crosslinking density. MTT and “live/dead” assay showed that these hydrogels were compatible to fibroblast cells, not exhibiting apparent cytotoxicity even at high concentrations. Moreover, in vitro bovine serum albumin release from these hydrogels was also investigated, and it could be found that the release profiles showed a burst effect followed by a continuous release phase, and the release rate was inversely proportional to the crosslinking density of hydrogels. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1919–1930, 2010  相似文献   

15.
The swelling capacity and release rate of two homologous drugs, theophylline and aminophylline, from acrylic acid/n‐alkyl methacrylate hydrogels have been studied. The maximum equilibrium swelling increases as the molar fraction of acrylic acid or the chain length of the methacrylate in the hydrogels increases. Water diffusion to the hydrogels is non‐Fickian. Both drugs are released from the fully swollen hydrogels according to Fick's law. However, the drug release from xerogels deviates from Fick's law, especially for aminophylline. As expected because of its larger size, aminophylline diffuses more slowly than theophylline under similar experimental conditions. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2756–2765, 2004  相似文献   

16.
Peptides and polymers are the “elite” building blocks in hydrogel fabrication where the typical approach consists of coupling specific peptide sequences (cell adhesive and/or enzymatically cleavable) to polymer chains aiming to obtain controlled cell responses (adhesion, migration, differentiation). However, the use of polymers and peptides as structural components for fabricating supramolecular hydrogels is less well established. Here, the literature on the design of peptide/polymer systems for self‐assembly into hybrid hydrogels, as either peptide‐polymer conjugates or combining both components individually, is reviewed. The properties (stiffness, mesh structure, responsiveness, and biocompatibility) of the hydrogels are then discussed from the viewpoint of their potential biomedical applications.  相似文献   

17.
The synthesis, structural, and retrostructural analysis of a library of self‐assembling dendrons containing triethyl and tripropyl ammonium, pyridinium and 3‐methylimidazolium chloride, tetrafluoroborate, and hexafluorophosphate at their apex are reported. These dendritic ionic liquids self‐assemble into supramolecular columns or spheres which self‐organize into 2D hexagonal or rectangular and 3D cubic or tetragonal liquid crystalline and crystalline lattices. Structural analysis by X‐ray diffraction experiments demonstrated the self‐assembly of supramolecular dendrimers containing columnar and spherical nanoscale ionic liquid reactors segregated in their core. Both in the supramolecular columns and spheres the noncovalent interactions mediated by the ionic liquid provide a supramolecular polymer and therefore, these assemblies represent a new class of dendronized supramolecular polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4165–4193, 2009  相似文献   

18.
A novel strategy was developed for the in situ incorporation of silver nanoparticles into the supramolecular hydrogel networks, in which colloidally stable silver hydrosols were firstly prepared in the presence of an amphiphilic block copolymer of poly(oxyethylene)‐poly(oxypropylene)‐poly(oxyethylene) and then mixed with aqueous solution of α‐cyclodextrin. The analyses from rheology, X‐ray diffraction, and scanning electron microscopy confirmed the formation of the supramolecular‐structured hydrogels hybridized with silver nanoparticles. In particular, the colloidal stability of the resultant silver hydrosol and its gelation kinetics in the presence of α‐cyclodextrin as well as the viscoelastic properties of the resultant hybrid hydrogel were investigated under various concentrations of the used block copolymer. It was found that the used block copolymer could act not only as the effective reducing and stabilizing agents for the preparation of the silver hydrosol but also as the effective guest molecule for the supramolecular self‐assembly with α‐cyclodextrin. In addition, the effects of silver nanoparticles on the gelation process and the hydrogel strength were also studied. Such a hybrid hydrogel material could show a good catalytic activity for the reduction of methylene blue dye by sodium borohydride. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 740–749, 2009  相似文献   

19.
Diverse motion mechanisms encountered in nature serve successfully as a guide for engineering efficient mobile devices used in cargo transport and force generation. We have previously demonstrated earthworm locomotion inspired directed motion and cargo transport using a pNIPA hydrogel‐based device. The motility mechanism involved sequential shrinking and swelling of segments of a long gel in a glass capillary, induced by volume phase transitions, through a simple temperature stimulus using peltier elements. The same effect is generated in the earthworm by flexing and stretching muscles along the body as it moves in its underground burrow. The shrinking segments move the body forward while the swollen segments anchor against the walls to prevent slippage. Here, we show an improved device, using the same working principle, made of super‐porous, mechanically robust organic‐inorganic hybrid hydrogels (also known as nanocomposite hydrogels), which show large volume phase transitions above 32 °C without requiring lengthy hydrolysis times. The gels demonstrate fast swelling kinetics with complete restoration of their initial size in short times, making the gels reusable for multiple cycles. This improved device, with its reusability, fast swelling kinetics, and efficient slip‐free motion, opens a variety of possibilities for applications in microfluidics, nanobiotechnology, small‐scale robotics, and micro electro mechanical systems. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5027–5033, 2009  相似文献   

20.
Supramolecular hydrogels have been prepared on the basis of polymer inclusion complex (PIC) formation between poly(ethylene glycol) (PEG)-modified chitosans and alpha-cyclodextrin (alpha-CD). A series of PEG-modified chitosans were synthesized by coupling reactions between chitosan and monocarboxylated PEG using water-soluble carbodiimide (EDC) as coupling agent. With simple mixing, the resultant supramolecular assembly of the polymers and alpha-CD molecules led to hydrogel formation in aqueous media. The supramolecular structure of the PIC hydrogels was confirmed by differential scanning calorimetry (DSC), X-ray diffraction, and (13)C cross-polarized/magic-angle spinning (CP/MAS) NMR characterization. The PEG side-chains on the chitosan backbones were found to form inclusion complexes (ICs) with alpha-CD molecules, resulting in the formation of channel-type crystalline micro-domains. The IC domains play an important role in holding together hydrated chitosan chains as physical junctions. The gelation property was affected by several factors including the PEG content in the polymers, the solution concentration, the mixing ratio of host and guest molecules, temperature, pH, etc. All the hydrogels in acidic conditions exhibited thermo-reversible gel-sol transitions under appropriate conditions of mixing ratio and PEG content in the mixing process. The transitions were induced by supramolecular association and dissociation. These supramolecular hydrogels were found to have phase-separated structures that consist of hydrophobic crystalline PIC domains, which were formed by the host-guest interaction between alpha-CD and PEG, and hydrated chitosan matrices below the pK(a).The formation of inclusion complexes between alpha-cyclodextrin and PEG-modified chitosan leads to the formation of hydrogels that can undergo thermo-reversible supramolecular dissociation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号