首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibrational spectra of rhombohedral TeO3 (r‐TeO3) are analyzed along with those of ReO3‐like proto‐phase (c‐TeO3) and α‐TeO2 (paratellurite), emphasizing their lattice dynamic and crystal chemistry aspects. It is shown that (1) r‐TeO3 can be regarded as resulting from the condensation of a particular R‐point soft phonon of c‐TeO3; (2) the Raman spectra of r‐TeO3 and α‐TeO2 are indicative of the two fundamentally different (from the crystal chemistry point of view) types of crystalline oxides, namely, framework‐type and island‐type, respectively. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Recently recorded 17O NMR spectra of compounds studied in a previous work (Taskinen E. Acta Chem. Scand. 1985; B39 : 489–494) dealing with the thermodynamics of isomerization of the enol ethers of α‐acetyl‐γ‐butyrolactone reveal an error in compound identification, caused by an unexpected isomerization reaction during the synthetic procedure. Thus, acid‐catalyzed treatment of the lactone with HC(OR)3 in the respective alcohol ROH is shown to lead initially to the desired enol ethers which, however, are gradually isomerized to a mixture of the enol ethers and an ester of 2‐methyl‐4,5‐dihydrofuran‐3‐carboxylic acid. As a result, only one of the two isomeric compounds detected in the previous equilibration study was the expected enol ether (the thermodynamically more stable E isomer) of α‐acetyl‐γ‐butyrolactone, while the other, dominating species was the respective carboxylic ester. In the present work, the evidence provided by the 17O NMR spectra is presented, and the relative stabilities of the isomeric compounds are discussed on the basis of computational enthalpy data. The treatment is also extended to the respective isomeric compounds derived from α‐acetyl‐δ‐valerolactone. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

3.
We report surface‐enhanced Raman scattering (SERS) spectra from 4‐mercaptopyridine (4‐Mpy) adsorbed on sub‐monolayers of α‐Fe2O3 nanocrystals (sphere, spindle, cube). The maximum enhancement factor has been estimated to be about 104 compared to that of 4‐Mpy in solution. A possible mechanism has been proposed that the charge transfer between the α‐Fe2O3 nanocrystals and the 4‐Mpy molecules is most likely responsible for the observed enhancement of Raman intensity of adsorbed 4‐Mpy molecules as surface plasmon resonances have not occurred. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
α‐Cyclopropyl stability impacts on singlet and triplet heterocyclic carbenes with acyclic, cyclic, and cyclic‐unsaturated structures are compared and contrasted to di‐t‐butyl as well as t‐butylcyclopropylcarbenes through appropriate isodesmic reactions at B3LYP/AUG‐cc‐pVTZ level. Substitution of one of the t‐butyl groups of di‐t‐butylcarbene with a cyclopropyl alters the ground state multiplicity from triplet to singlet with a singlet–triplet energy separation (ΔEs–t) of 7.2 kcal/mol. Additional heteroatom substitution increases ΔEs–t values for the resulting α‐heteroatom cyclopropylcarbenes in the following order: amino > oxy > thio > phophino. α‐Cyclopropyl group stabilizes singlet states of all our carbenes two to three times more than their corresponding triplet states. The ΔEs–t values of all the carbenes are increased through cyclization, while the introduction of unsaturation in the rings causes small and rather random changes. To probe the kinetic stability of the species, we calculated the transition states for the opening of cyclopropyl through 1,2‐C shift. Interestingly, the 4.1 kcal/mol energy barrier in cyclopropylcarbene is significantly increased in the presence of heteroatoms to 31.2 kcal/mol for aminocyclopropylcarbene. The reactivity of the species is discussed in terms of nucleophilicity and electrophilicity issues showing our carbenes, especially acyclic ones, more nucleophilic than the common N‐heterocyclic carbenes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
For the first time, Raman spectroscopy of α and γ polymorphs of AlH3 has been performed in the pressure range from ambient up to 16.9 and 32.7 GPa, respectively using the diamond anvil cell (DAC) technique. An analysis of pressure response wavenumbers (ν) for α‐AlH3 showed a change of dνi/dP at a pressure of about 8 GPa and may indicate a monoclinic distortion from the initially hexagonal α‐AlH3. The distortion is stable at least up to 16.9 GPa. The γ form exhibited more complex behavior transforming to the α form at a pressure of about 12 GPa. The structural phase transition was shown to be an irreversible and kinetically slow process that required at least 5 h to complete. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The thermo‐Raman spectra of synthesised α‐gallium oxyhydroxide nanorod prove that the transition of α‐gallium oxyhydroxide to β‐gallium oxide nanorods occurs above 350 °C but below 400 °C. Scanning electron microscopy proves that the morphology of the α‐gallium oxyhydroxide nanorods is retained upon calcination to β‐gallium oxide. X‐ray diffraction patterns show that the nanorods are α‐gallium oxyhydroxide converting upon calcination to β‐gallium oxide. Intense Raman bands are observed at 190, 262, 275, 430, 520, 605, and 695 cm−1, which undergo a red shift of ∼5 cm−1 upon heating to 350 °C. Upon thermal treatment above 350 °C, the Raman spectrum shows a significantly different pattern. Raman bands are observed at 155, 212, 280, 430, 570, and 685 cm−1. The thermo‐Raman spectra are in harmony with the TG and DTG patterns, which show that the reaction of α‐gallium oxyhydroxide to β‐gallium oxide occurs at 365 °C. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Recent spectroscopic investigations of various amino acids report intriguing high‐pressure and low‐temperature behavior of NH3+ groups and their influence on various hydrogen bonds in the system. In particular, the variation of the intensity of NH3+ torsional mode at different temperatures and pressures has received much attention. We report here the first in situ Raman investigations of fully deuterated α‐glycine up to ∼20 GPa. The discontinuous changes in COO and ND3+ modes across ∼3 GPa indicate subtle structural rearrangements in fully deuterated α‐glycine. The decrease in the intensity of ND3+ torsional mode is found to be similar to that of undeuterated α‐glycine. The pressure‐induced stiffening of N D and CD2 stretching modes are discussed in the context of changes in the hydrogen‐bonding interactions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
First and second‐order Raman spectra of B6O and their dependence on the wavelength of the excitation line from IR (infrared) to deep UV (ultraviolet) has been studied. The first‐order Raman spectra contain 11 well‐resolved lines of the 12 expected modes 5 A1g + 7 Eg (space group R‐3m, point group D3d). The second‐order Raman spectra contains eight lines that are resolved only in the case of the 244‐nm excitation line. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Cyclonona‐3,5,7‐trienylidene ( 1 ) changes from being a transition state (TS) to minimum states when substituted by α‐methyl groups and ?‐X, where X = CMe2, NMe, PMe, O, S, cyclopropyl, and SiMe2 ( 2 , 3 , 4 , 5 , 6 , 7 , 8 , respectively) at density functional theory. Specifically, the parent carbene 1 exhibits a negative vibrational force constant and proves to be an unreachable electrophilic TS while shows Cs symmetry with an NBO atomic charge of +0.70 on its carbenic center. It has a triplet ground state with a rather small singlet‐triplet energy gap (ΔEs–t = ?4.1 kcal/mol). In contrast, all of its seven scrutinized derivatives enjoy reachable global minima, with C1 symmetry, desired nucleophilicity, and singlet closed shell (Scs) ground states (for all but 8 which remains triplet). Stability is indicated by relative ΔEs–t values: 2 > 3 > 4 > 5 > 6 > 7 > 1 > 8 . The highest ΔEs–t as well as NBO carbenic atomic negative charge (?0.74) are displayed by 2 . Our carbenes ( 2 , 3 , 4 , 5 , 6 , 7 ) appear more nucleophilic than the synthesized N‐heterocyclic carbenes (imidazol‐2‐ylidenes). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
We studied the cleave of bis(p‐nitrophenyl) phosphate (BNPP) over a pH range of 7.0–12.0 in the presence of cationic micelles of cetyldiethylethanolammonium bromide, cetyldimethylethanolammonium bromide, cetylpyridinium bromide, cetyltrimethylammonium bromide, and cetylpyridinium chloride by using different α‐nucleophiles, viz acetohydroxamate, benzohydroxamate, salicylhydroxamate, butane‐2,3‐dione monooximate, and α‐benzoin oximate ions. With the use of α‐nucleophiles in cationic micellar media, the hydrolytic cleavage of BNPP was found to be approximately 105‐fold faster than its spontaneous hydrolysis. All reactions followed pseudo‐first‐order kinetics. The effect of various concentrations of cationic micelles for the reaction of BNPP and α‐nucleophiles has been studied. The variation of kobs values of the reactions depends on the micellar structure, that is, head groups, hydrophobic tail length, and counter ion. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
The kinetics of the gas‐phase elimination of α‐methyl‐trans‐cinamaldehyde catalyzed by HCl in the temperature range of 399.0–438.7 °C, and the pressure range of 38–165 Torr is a homogeneous, molecular, pseudo first‐order process and undergoing a parallel reaction to produce via (A) α‐methylstyrene and CO gas and via (B) β‐methylstyrene and CO gas. The decomposition of substrate E‐2‐methyl‐2‐pentenal was performed in the temperature range of 370.0–410.0 °C and the pressure range of 44–150 Torr also undergoing a molecular, pseudo first‐order reaction gives E‐2‐pentene and CO gas. These reactions were carried out in a static system seasoned reactions vessels and in the presence of toluene free radical inhibitor. The rate coefficients are given by the following Arrhenius expressions:
  • Products formation from α‐methyl‐trans‐cinamaldehyde
  • α‐methylstyrene :
  • β‐methylstyrene :
  • Products formation from E‐2‐methyl‐2‐pentenal
  • E‐2‐pentene :
The kinetic and thermodynamic parameters for the thermal decomposition of α‐methyl‐trans‐cinamaldehyde suggest that via (A) proceeds through a bicyclic transition state type of mechanism to yield α‐methylstyrene and carbon monoxide, whereas via (B) through a five‐membered cyclic transition state to give β‐methylstyrene and carbon monoxide. However, the elimination of E‐2‐methyl‐2‐pentenal occurs by way of a concerted cyclic five‐membered transition state mechanism producing E‐2‐pentene and carbon monoxide. The present results support that uncatalyzed α‐β‐unsaturated aldehydes decarbonylate through a three‐membered cyclic transition state type of mechanism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
BH4, a well‐known and widely used reducing agent for carbonyl compounds, has been reported to have the ability to participate in dihydrogen bonding, an interaction with applications in catalysis, stereoselectivity and crystal engineering. Specifically, α‐hydroxycarbonyls are activated for reduction by dihydrogen bonding that occurs between BH4 and hydroxyl group. We explored the effect of the interaction on the mechanism of these reactions by examining their activation parameters. We found that dihydrogen bonding activates α‐hydroxycyclopentanone for reduction with NBu4BH4 by lowering the activation enthalpy by 6.6 kcal/mol. While the activation entropy is a significant component of the barrier, the changes resulting from the occurrence of dihydrogen bonding are manifested predominantly in the enthalpy term. Computational studies suggest that, while internal hydrogen bonding is allowed by the flexibility of the carbon backbone, that interaction is outweighed by dihydrogen bonding once BH4 is present in the system. Experimentally, a red shift of the hydroxyl frequency is observed upon addition of BH4 to the reaction mixture, suggesting a dihydrogen bonding interaction. The flexibility of the substrate's skeleton or the selectivity of the hydride sites in BH4 does not account for the lack of directing effect of the dihydrogen bonding. When a substrate with a rigid naphthalene backbone moiety, 2‐hydroxyacenaphthylen‐1(2H)‐one, is reduced, the stereochemical outcome is very similar to the one corresponding to the α‐hydroxycyclopentanone. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
With its reputation as a high‐energy density fuel, aluminum hydride (AlH3) has received renewed attention as a material that is particularly suitable, not only for hydrogen storage but also for rocket propulsion. While the various phases of AlH3 have been investigated theoretically, there is a shortage of experimental studies corroborating the theoretical findings. In response to this, we present here an investigation of these compounds based primarily on two research areas in which there is the greatest scarcity of information in the literature, namely Raman and infrared (IR) absorption analysis. To the authors' knowledge, this is the first report of experimental far‐IR absorption results on these compounds. Two different samples prepared by broadly similar ethereal reactions of AlCl3 with LiAlH4 were analyzed. Both Raman and IR absorption measurements indicate that one sample is purely γ‐AlH3 and that the other is a mixture of α‐, β‐, and γ‐AlH3 phases. X‐ray diffraction confirms the spectroscopic findings, most notably for the β‐AlH3 phase, for which optical spectroscopic data are reported here for the first time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Experimental vibrational spectroscopic studies and density functional theory (DFT) calculations of the di‐amino acid peptide derivatives α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu have been undertaken. Raman and infrared spectra have been recorded for samples in the solid state. DFT simulations were conducted using the B3‐LYP correlation functional and the cc‐pVDZ basis set to determine energy minimized/geometry optimized structures (based on a single isolated molecule in the gaseous state). Normal coordinate calculations have provided vibrational assignments for fundamental modes, including their potential energy distributions. Significant differences are observed between α‐ and β‐N‐acetyl‐L‐Asp‐L‐Glu both in the computed structures and in the vibrational spectra. The combination of experimental and calculated spectra provide an insight into the structural and vibrational spectroscopic properties of di‐amino acid peptide derivatives. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
《X射线光谱测定》2006,35(6):329-337
An existing Monte Carlo code was modified and extended to predict the intensity ratio of elastically and inelastically scattered plutonium Lα x‐rays incident on rock samples in the Mars Exploration Rover's α‐particle x‐ray spectrometer (APXS) device. The systematics of the scatter ratio as a function of effective sample atomic number are explored. The simulated Rayleigh/Compton ratios (R/C)sim are compared with measured ratios (R/C)meas that are obtained by fitting APXS spectra of geochemical reference materials using an x‐ray fluorescence version of GUPIX. The quantity K = (R/C)meas/(R/C)sim is then plotted against the mean atomic number of the sample to provide a calibration for known samples. Departures of K values of unknown samples from this calibration may then be attributed to the presence of light, ‘invisible’ elements in the sample. This work is part of an ongoing project aimed at developing methods to quantify bound water in Martian rocks analyzed by the present and the next generation APXS instruments. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
The metastability of the bixbyite‐ and corundum‐type In2O3 polymorphs up to 33 GPa (at room temperature) is shown. While compressed (in diamond anvil cells) and laser‐heated, both polymorphs undergo a phase transition to the Rh2O3‐II‐type structure (space group Pbcn, No. 60). The direct transition from bixbyite to Rh2O3‐II structure has not yet been observed for any other oxide.

  相似文献   


17.
The photophysics and photochemistry of pyrazine (C4H4N2, D2h) after excitation to the S2 (1 1B2u, 1ππ*) electronic state were studied by using the resonance Raman spectroscopy and complete active space self‐consistent field method calculations. The B‐band resonance Raman spectra in cyclohexane solvent were obtained at 266.0, 252.7, and 245.9 nm excitation wavelengths to probe the structural dynamics of pyrazine in the S2 (1 1B2u, 1ππ*) state. Three electronic states 1 1B3u, 1 1B1g, and 1 1B2g were found to couple with the S2 (1 1B2u, 1ππ*) state. Two conical intersection (CI) points CI[S2(B2u)/S1(B3u)] and CI[S1/S0] and one transition state of the isomerization between pyrazine and pyrimidine were predicted to play important roles in the photochemistry of pyrazine. On the basis of the calculations, the mechanism of the photoisomerization reaction between pyrazine and pyrimidine has been proposed. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
《X射线光谱测定》2004,33(5):321-325
We developed an EPMA mapping method for small AlaFebSic particles in 1050‐H18 aluminum sheet, which is one of the base materials coated by photoresist in advance called PS plate (pre‐sensitized printing plate). In this method, we used the ratios of relative x‐ray intensities, IFe/IAl and IFe/ISi instead of the mass ratios, Fe/Al and Fe/Si, of the main elements which constitute the particles and tried to determine the ratios of relative x‐ray intensities using Monte Carlo calculations. Furthermore, using this developed mapping method, we performed the mapping of small AlaFebSic particles such as Al3Fe (0–3%Si as impurities), Al6Fe (0–1%Si as impurities), α‐AlFeSi(Al8.3Fe2Si) and β‐AlFeSi(Al8.9Fe2Si2) in 1050‐H18 aluminum sheets. We found that the discrimination of these particles was achieved with this mapping method. We confirmed that this method is useful for the mapping of AlaFebSic particles in 1050‐H18 aluminum sheets. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
The B‐band resonance Raman spectra of 2(1H)‐pyridinone (NHP) in water and acetonitrile were obtained, and their intensity patterns were found to be significantly different. To explore the underlying excited state tautomeric reaction mechanisms of NHP in water and acetonitrile, the vibrational analysis was carried out for NHP, 2(1D)‐pyridinone (NDP), NHP–(H2O)n (n = 1, 2) clusters, and NDP–(D2O)n (n = 1, 2) clusters on the basis of the FT‐Raman experiments, the B3LYP/6‐311++G(d,p) computations using PCM solvent model, and the normal mode analysis. Good agreements between experimental and theoretically predicted frequencies and intensities in different surrounding environments enabled reliable assignments of Raman bands in both the FT‐Raman and the resonance Raman spectra. The results indicated that most of the B‐band resonance Raman spectra in H2O was assignable to the fundamental, overtones, and combination bands of about ten vibration modes of ring‐type NHP–(H2O)2 cluster, while most of the B‐band resonance Raman spectra in CH3CN was assigned to the fundamental, overtones, and combination bands of about eight vibration modes of linear‐type NHP–CH3CN. The solvent effect of the excited state enol‐keto tautomeric reaction mechanisms was explored on the basis of the significant difference in the short‐time structural dynamics of NHP in H2O and CH3CN. The inter‐molecular and intra‐molecular ESPT reaction mechanisms were proposed respectively to explain the Franck–Condon region structural dynamics of NHP in H2O and CH3CN.Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
We have succesfully investigated emissive interface states in fabricated indium‐tin‐oxide (ITO)/N,N′‐di‐1‐naphthyl‐N,N′‐diphenyl‐1,1′‐biphenyl‐4,4′diamine (α‐NPD)/tris(8‐hydroxyquinoline) aluminum (Alq3)/LiF/Al organic light‐emitting diodes (OLEDs) by a modified deep‐level optical spectroscopy (DLOS) technique. In the vicinity of the α‐NPD/Alq3 emissive interface, a discrete trap level was found to be located at ~1.77 eV below the conduction band of Alq3, in addition to band‐to‐band transitions of carriers from α‐NPD to Alq3. (© 2007 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号