首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider the low‐frequency scattering problem of a point source generated incident field by a small penetrable sphere. The sphere, which is also lossy, contains in its interior a co‐ecentric spherical core on the boundary of which an impedance boundary condition is satisfied. An appropriate modification of the incident wave field allows for the reduction of the solution to the corresponding scattering problem of plane wave incidence, by moving the point source to infinity. For the near field, we obtain the low‐frequency coefficients of the zeroth and the first order. This was done with the help of the corresponding solution for the hard core problem and an appropriate use of linearity with respect to the Robin parameter. In the far field, we derive the leading non‐vanishing terms for the normalized scattering amplitude and the scattering cross‐section, which are both of the second order, as well as for the absorption cross‐section, which is of the zeroth order. The special cases of a lossy or a lossless penetrable sphere, of a resistive sphere, and of a hard sphere are recovered by an appropriate choice of the physical or the geometrical parameters. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

2.
A spherical wave emanating from a point source is scatteredby either a soft or a hard body. The incident spherical wavehas a wavelength which is much larger than the characteristicdimension of the scatterer and it is modified in such a wayas to recover the plane wave incidence when the source pointrecedes to infinity. Using low frequency expansions the scatteringproblem is transformed to a sequence of exterior potential problemsin the presence of a monopole singularity located at the sourceof the incident wave field. Complete expansions for the scatteringamplitude are provided. The method is applied to the cases ofa soft and a hard sphere and the first three approximationsfor the near, as well as the far, field are evaluated. It isobserved that every one, after the first, low frequency approximationof the far field, involves one spherical multipole more thanthe corresponding approximation for the case of an incidentplane wave. As the point singularity tends to infinity, therelative results recover all the known expressions for planeincidence. It is shown that for point excitation the Rayleighapproximation of the scattering amplitude for a hard sphereis of the second order, in contrast to the case of plane excitationwhich is of the third order. Simple algorithms that specifythe radius and the position of a soft and a hard sphere areproposed, which are based on the additional dependence of thescattering amplitude represented by the distance from the pointsource to the centre of the scatterer. The inversion algorithmis shown to be stable whenever the source point is not too faraway from the target sphere. A simple way to decide whetherthe sphere is a soft or a hard body is also provided.  相似文献   

3.
We investigate the scattering process, generated by a plane electromagnetic field that is incident upon a moving perfectly conducting spheroid. An accurate treatment of the electromagnetic waves interaction with scatterers in uniform motion is based on the special relativity principle. In the object's frame the incident wave is assumed to have a wavelength which is much larger than the characteristic dimension of the scatterer and thus the low‐frequency approximation method is applicable to the scattering problem. For the near electromagnetic field we obtain the zeroth‐order low‐frequency coefficients, while in the far field we calculate the leading terms for the scattering amplitude and scattering cross‐section. Finally, using the inverse Lorentz transform, we obtain the same approximations in the observer's frame. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
A theory of the scattering of electromagnetic waves by homogeneous spheres, the so-called Mie theory, is presented in a unique and coherent manner in this paper. We begin with Maxwell's equations, from which the vector wave equations are derived and solved by means of the two orthogonal solutions to the scalar wave equation. The transverse incident electric field is mapped in spherical coordinates and expanded in known mathematical functions satisfying the scalar wave equation. Determination of the unknown coefficients in the scattered and internal fields is achieved by matching the electromagnetic boundary conditions on the surface of a sphere. Far-field solutions for the electric field are then given in terms of the scattering functions. Transformation of the electric field to the reference plane containing incident and scattered waves is carried out. Extinction parameters and the phase matrix are derived from the electric field perpendicular and parallel to the reference plane. On the basis of the independent-scattering assumption, the theory is extended to cases involving a sample of homogeneous spheres.  相似文献   

5.
Low frequency scattering by isolated targets in free space hasbeen well studied and there exists a general theory as wellas explicit results for special target shapes. In the presentpaper we develop a comparable theory for low frequency scatteringof targets above a flat plane. The presence of the ground planehas a considerable effect on the way in which the target scattersan incident field and this effect is highly dependent on theboundary condition used to model the ground. To gain an understandingof how the target-ground interaction affects the scatteringamplitude at low frequencies a number of different models aretreated. Attention is directed to scalar scattering by smallthree-dimensional objects on which either Dirichlet or Neumannboundary conditions are imposed. The object is located abovea ground plane on which again either Dirichlet or Neumann conditionsare imposed, resulting in four different combined boundary-valueproblems. The incident wave originates in the half-space containingthe object. The full low frequency expansion of the scatteredfield is obtained in terms of solutions of arbitrarily shapedscatterers. The first non-trivial term is found explicitly fora spherical target using separation of variables in bisphericalcoordinates. This is compared with the exact result for thetranslated sphere in the absence of the ground plane, also foundin terms of bispherical coordinates. The presence of the groundplane is demonstrated to have a profound effect on the scatteringamplitude and this effect is shown to change drastically withthe boundary condition on the plane. Amazingly, the presenceof an acoustically soft plane changes the signature of a softsphere so that it more closely resembles the signature of ahard sphere. These results provide some essential benchmarksfor making a reasonable extrapolation from the free space targetsignature of a general object to its signature in the presenceof a ground plane.  相似文献   

6.
We outline a method to compute the solution in the frequency–domain for scattering in a waveguide by exploiting symmetry. The method is illustrated by considering a simple scattering example, where soft hard boundary conditions are alternated. We show how the straightforward mode matching or eigenfunction matching solution can be easily converted to scattering and transmission matrices when symmetry is exploited. We then show how the solution for two scatterers can be found explicitly, using symmetry which allows validation of our subsequent solution by scattering matrices. We also give a series of identities which the scattering matrix must satisfy for further numerical validation. Using these frequency–domain solutions we compute the time-domain scattering by incident Gaussian wave–packets.  相似文献   

7.
A new technique is described for imaging obstacles using theacoustic far field response for plane wave incidence. The methodrequires no a priori information about the surface, nor doesit depend upon prior knowledge of the surface boundary conditions.The algorithm is straightforward to implement and is illustratedby imaging multiple targets simultaneously for various surfaceboundary conditions: soft, hard, and impedance. The input datais the full acoustic scattering matrix at a single frequency,from which the eigenvalue and eigenfunctions of the far fieldoperator are determined. Associated incident wave functionsare then used to compute a spatial indicator function whichtakes on large values in the exterior of the target but is boundedinside the obstacle, or obstacles when there are multiple disconnectedsurfaces.  相似文献   

8.
In this paper, we consider the Dirichlet and impedance boundary value problems for the Helmholtz equation in a non‐locally perturbed half‐plane. These boundary value problems arise in a study of time‐harmonic acoustic scattering of an incident field by a sound‐soft, infinite rough surface where the total field vanishes (the Dirichlet problem) or by an infinite, impedance rough surface where the total field satisfies a homogeneous impedance condition (the impedance problem). We propose a new boundary integral equation formulation for the Dirichlet problem, utilizing a combined double‐ and single‐layer potential and a Dirichlet half‐plane Green's function. For the impedance problem we propose two boundary integral equation formulations, both using a half‐plane impedance Green's function, the first derived from Green's representation theorem, and the second arising from seeking the solution as a single‐layer potential. We show that all the integral equations proposed are uniquely solvable in the space of bounded and continuous functions for all wavenumbers. As an important corollary we prove that, for a variety of incident fields including an incident plane wave, the impedance boundary value problem for the scattered field has a unique solution under certain constraints on the boundary impedance. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

9.
The scattering of electromagnetic waves by a homogeneous sphere near a plane boundary is presented in this paper. The vector wave equations derived from Maxwell’s equations are solved by means of the two orthogonal solutions to the scalar wave equation. Hankel transformation and Erdélyi’s formula are used to satisfy the planar boundary conditions and the determination of the unknown coefficients in the scattered field and internal fields is achieved by matching the electromagnetic boundary conditions on the surface of the sphere. Existence and uniqueness of the solution of the series involving these unknown coefficients are shown.  相似文献   

10.
This paper is concerned with the diffraction problem in a transversely isotropic piezoelectric medium by a half-plane. The half-plane obstacle considered here is a semi-infinite slit, or a crack; both its surfaces are traction free and electric absorbent screens. In a generalized sense, we are dealing with the Sommerfeld problem in a piezoelectric medium.¶The coupled diffraction fields between acoustic wave and electric wave are excited by both incident acoustic wave as well as incident electric wave; and the sound soft and electric "blackness" conditions on the screens are characterized by a system of simultaneous Wiener-Hopf equations. Closed form solutions are sought by employing special techniques. Some interesting results have been obtained, such as mode conversions between acoustic wave and electric wave, novel diffraction patterns in the scattering fields, and the effect of electroacoustic head wave, as well as of surface wave-Bleustein-Gulyaev wave.¶Unlike the classical Sommerfeld problem, in which the only concern is the scattering field of electric wave, the strength of material, e.g. material toughness, is another concern here. From this perspective, relevant dynamic field intensity factors at the crack tip are derived explicitly.  相似文献   

11.
Based on the methods of complex function, conformal mapping, and multipolar coordinate system, dynamic response of an elliptical inclusion embedded in an anisotropic half space is investigated. In order to find the solution of SH waves, the governing equation is transferred into its normalized form. Then, the scattering wave induced by the inclusion and the standing wave in the inclusion is deduced. Different incident wave angles and the corresponding anisotropy of the half space are considered to obtain the reflected waves. The elliptical inclusion is transferred into a unit circle by conformal mapping method, and then the undetermined coefficients in scattering wave and standing wave are solved by using the continuous condition at the boundary of the inclusion. Subsequently, the dynamic stress concentration factor (DSCF) around the inclusion is calculated and analyzed. Numerical results demonstrate that the distribution of the DSCF is mainly influenced by the incident wave angle and the incident wave number. It is affected by anisotropic parameters as well.  相似文献   

12.
A complete set of radiating “outwards” eigensolutions of the Helmholtz equation, obtained by transforming appropriately through the Vekua mapping the kernel of Laplace equation, is applied to the investigation of the acoustic scattering by penetrable prolate spheroidal scatterers. The scattered field is expanded in terms of the aforementioned set, detouring so the standard spheroidal wave functions along with their inherent numerical deficiencies. The coefficients of the expansion are provided by the solution of linear systems, the conditioning of which calls for arbitrary precision arithmetic. Its integration enables the polyparametric investigation of the convergence of the current approach to the solution of the direct scattering problem. Finally, far‐field pattern visualization in the 3D space clarifies the preferred scattering directions for several frequencies of the incident wave, ranging from the “low” to the “resonance” region.  相似文献   

13.
We present a Newton‐type method for reconstructing planar sound‐soft or perfectly conducting cracks from far‐field measurements for one time‐harmonic scattering with plane wave incidence. Our approach arises from a method suggested by Kress and Rundell (Inv. Probl. 2005; 21 (4):1207–1223) for an inverse boundary value problem for the Laplace equation. It was extended to inverse scattering problems for sound‐soft obstacles (Mathematical Methods in Scattering Theory and Biomedical Engineering. World Scientific: Singapore, 2006; 39–50) and for sound‐hard cracks (Inv. Probl. 2006; 22 (6)). In both cases it was shown that the method gives accurate reconstructions with reasonable stability against noisy data. The approach is based on a pair of nonlinear and ill‐posed integral equations for the unknown boundary. The integral equations are solved by linearization, i.e. by regularized Newton iterations. Numerical reconstructions illustrate the feasibility of the method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
In this work, we study two operators that arise in electromagnetic scattering in chiral media. We first consider electromagnetic scattering by a chiral dielectric with a perfectly conducting core. We define a chiral Calderon‐type surface operator in order to solve the direct electromagnetic scattering problem. For this operator, we state coercivity and prove compactness properties. In order to prove existence and uniqueness of the problem, we define some other operators that are also related to the chiral Calderon‐type operator, and we state some of their properties that they and their linear combinations satisfy. Then we sketch how to use these operators in order to prove the existence of the solution of the direct scattering problem. Furthermore, we focus on the electromagnetic scattering problem by a perfect conductor in a chiral environment. For this problem, we study the chiral far‐field operator that is defined on a unit sphere and contains the far‐field data, and we state and prove some of its properties that are preliminaries properties for solving the inverse scattering problem. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

15.
We consider the scattering of a time-harmonic acoustic incident plane wave by a sound soft convex curvilinear polygon with Lipschitz boundary. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the number of degrees of freedom required to achieve a prescribed level of accuracy grows at least linearly with respect to the frequency of the incident wave. Here we propose a novel Galerkin boundary element method with a hybrid approximation space, consisting of the products of plane wave basis functions with piecewise polynomials supported on several overlapping meshes; a uniform mesh on illuminated sides, and graded meshes refined towards the corners of the polygon on illuminated and shadow sides. Numerical experiments suggest that the number of degrees of freedom required to achieve a prescribed level of accuracy need only grow logarithmically as the frequency of the incident wave increases.  相似文献   

16.
The study on the boundary layer is important in both mathematics and physics. This paper considers the nonlinear stability of boundary layer solutions for the Boltzmann equation with cutoff soft potentials when the Mach number of the far field is less than −1. Unlike the collision frequency is strictly positive in the hard potential or hard sphere model, the collision frequency has no positive lower bound for the cutoff soft potentials, so the decay in time cannot be expected. Instead, the present paper proves that the solution will always be in a small region around the boundary layer by noticing the decay property of collision operator in velocity.  相似文献   

17.
Inductive electromagnetic means, currently employed in real physical applications and dealing with voluminous bodies embedded in lossless media, often call for analytically demanding tools of field calculation at modeling stage and later on at numerical stage. Here, one is considering two closely adjacent perfect conductors, possibly almost touching one another, for which the 3D bispherical geometry provides a good approximation. The particular scattering problem is modeled with respect to the two solid impenetrable metallic spheres, which are excited by a time‐harmonic magnetic dipole, arbitrarily orientated in the 3D space. The incident, the scattered, and the total non‐axisymmetric electromagnetic fields yield rigorous low‐frequency expansions in terms of positive integral powers of the real‐valued wave number in the exterior medium. We keep the most significant terms of the low‐frequency regime, that is, the static Rayleigh approximation and the first three dynamic terms, while the additional terms are small contributors and they are neglected. The typical Maxwell‐type problem is transformed into intertwined either Laplace's or Poisson's potential‐type boundary value problem with impenetrable boundary conditions. In particular, the fields are represented via 3D infinite series expansions in terms of bispherical eigenfunctions, obtaining analytical closed‐form solutions in a compact fashion. This procedure leads to infinite linear systems, which can be solved approximately within any order of accuracy through a cutoff technique.  相似文献   

18.
Formulas are derived for solutions of many-body wave scattering problems by small particles in the case of acoustically soft, hard, and impedance particles embedded in an inhomogeneous medium. The case of transmission (interface) boundary conditions is also studied in detail. The limiting case is considered, when the size a of small particles tends to zero while their number tends to infinity at a suitable rate. Equations for the limiting effective (self-consistent) field in the medium are derived. The theory is based on a study of integral equations and asymptotics of their solutions as a→0. The case of wave scattering by many small particles embedded in an inhomogeneous medium is also studied.  相似文献   

19.
Interesting scientific and technological applications motivate the study of scattering problems, where a layered scatterer is excited by a spherical acoustic wave generated by a point-source located in its interior. The scatterer's core may be acoustically soft, hard, resistive, or penetrable. This paper initiates the investigation of scattering theorems, corresponding to the excitation of a layered scatterer by a point source in its interior. Reciprocity and general scattering theorems are established, relating the total fields and the corresponding far-field patterns. The optical theorem, relating the scattering cross-section with the field in the layer containing the source, is recovered as a corollary of the general scattering theorem. Furthermore, for a scatterer excited by a spherical and a plane wave, mixed scattering theorems are derived. Numerical implementations of the optical theorem in concrete scattering applications are analyzed.  相似文献   

20.
A spherical acoustic wave is scattered by a bounded obstacle.A generalization of the ‘optical theorem’ (whichrelates the scattering cross-section to the far-field patternin the forward direction for an incident plane wave) is proved.For a spherical scatterer, low-frequency results are obtainedby approximating the known exact solution (separation of variables).In particular, a closed-form approximation for the scatteredwavefield at the source of the incident spherical wave is obtained.This leads to the explicit solution of some simple near-fieldinverse problems, where both the source and coincident receiverare located at several points in the vicinity of a small sphere.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号