首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of polyurethane (PU) microencapsulated ammonium polyphosphate (MCAPP) were prepared by in situ polymerization from toluene‐2,4‐diisocyanate (TDI), polyethylene glycol (PEG), and pentaerythtritol (PER). And the structure was characterized by Fourier transform infrared spectroscopy (FTIR) and X‐ray photoelectron spectroscopy (XPS). Then it chose the optimal PEG constituent to design microcapsule from scanning electron microscopy (SEM) and water solubility test. The combustion and thermal degradation behaviors of PU blended APP or MCAPP were investigated by thermogravimetric analysis (TGA), UL‐94 test, and microcombustion calorimetry. The results showed that the PU/MCAPP had better thermal stability and flame retardance, due to the stable char forming by APP and PU shell. Moreover, the water resistance of flame retarded PU composite was greatly improved. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
A novel intumescent gel‐silica/ammonium polyphosphate core‐shell flame retardant (MCAPP), which contains silicon, phosphorus, and nitrogen, has been prepared by in situ polymerization. The structure of MCAPP was characterized by Fourier transform infrared (FTIR) and X‐ray photoelectron spectroscopy (XPS). The properties of MCAPP were investigated by water solubility, hydrophilicity, and morphological determination. The flame retardancy and thermal stability of polyurethane (PU) composite with MCAPP were evaluated by limiting oxygen index (LOI), UL‐94 test, cone calorimetry, and thermogravimetric analysis (TGA). The results showed that MCAPP could decrease the heat release rate (HRR) and increase the thermal stability of PU materials greatly. Finally, water‐resistant properties of PU/FR composites were also studied. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
Microencapsulated ammonium polyphosphate with polyurethane resin (PUMAPP) was prepared by in situ polymerization and characterized by X-ray photoelectron spectroscopy (XPS). The flame retardation of PUMAPP/dipentaerythritol(DPER) and ammonium polyphosphate (APP)/DPER flame retarded polypropylene (PP)/ethylene propylene diene rubber (EPDM) composites were studied using limiting oxygen index (LOI), UL-94 test and cone calorimeter. Results demonstrated that the flame retardancy of the PP/EPDM/PUMAPP/DPER composites was better than that of the PP/EPDM/APP/DPER composites at the same additive loading. Real time Fourier transform infrared (FTIR) and thermogravimetric analysis (TG) were used to study the thermal degradation and stability of the PP/EPDM/PUMAPP/DPER composite. The hydrolytic stability of the flame retarded PP/EPDM composites was studied. It was found that the microencapsulation of APP with the PU resin leaded to a decrease in the particle's water solubility. Moreover, the synergistic effect of vinyltrimethoxysilane (VTMS) on the PP/EPDM/PUMAPP/DPER composite was also investigated.  相似文献   

4.
Microencapsulated ammonium polyphosphate with an epoxy resin (EP) shell (MCAPP) was prepared by in situ method, and was characterized by transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FTIR), and thermgravimetric analysis (TGA). Compared to ammonium polyphosphate (APP), MCAPP has smaller particle sizes and lower water solubility. The effect of MCAPP on the fire performance of EP was studied by using limiting oxygen index (LOI) and UL‐94 tests. When the same loading levels of APP or MCAPP were added into EP, the LOI and UL‐94 tests show similar results. Tensile, bending, and impact strengths of the EP/APP and EP/MCAPP composites were also evaluated, and the results indicate that MCAPP has much less negative influence on the mechanical properties than APP. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Microencapsulated ammonium polyphosphate (MMT‐MF‐APP) with a montmorillonite‐melamine formaldehyde resin coating layer was successfully prepared by in situ polymerization. The product was characterized by Fourier‐transform infrared, X‐ray photoelectron spectroscopy, and scanning electron microscopy. Water absorption analysis showed that the microencapsulation of APP with the MMT‐MF resin leads to a decrease in the particle's water solubility. The microcapsules also exhibited better mechanical properties and higher flame retardancy in the ethylene–vinyl acetate copolymer with high vinyl acetate content (EVM) rubber compared with the common ammonium polyphosphate. Moreover, thermogravimetric analysis results showed that the EVM composites with MMT‐MF‐APP and dipentaerythritol (DPER) as flame retardants possess higher thermal stability than those with common APP and DPER as flame retardants. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
A new series of microcapsules containing pentaerythritol (PER) and ammonium polyphosphate (APP) with glycidyl methacrylate and butyl methacrylate as shell materials were synthesized by in situ polymerization. The structure and performance of the microencapsulated APP and microencapsulated PER were characterized by Fourier transform infrared spectroscopy, X‐ray photoelectron spectroscopy, scanning electron microscopy, and water contact angle. The flame retarded ethylene‐vinyl acetate copolymer (EVA) composites were studied by limiting oxygen index, UL‐94 test, and cone calorimeter. It was found that the microencapsulation of flame retardants (FRs) with the glycidyl methacrylate and butyl methacrylate lead to a decrease in the particle's water solubility and an improvement of the hydrophobicity. Results also demonstrated that the FR properties of EVA/microencapsulated APP/microencapsulated PER composites were better than those of the EVA/APP/PER composites at the same loading of FRs. The thermogravimetric analysis results reflected that the microencapsulated EVA composites had better thermal stability because of the forming of stable char during the combustion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
A series of epoxy resin nanocomposites modified by polyurethane and organically modified montmorillonite was prepared by effectively dispersing the organically modified montmorillonite in interpenetrating polymer networks (IPNs) of epoxy and polyurethane via the sequential polymeric technique and in situ polymerization. The tribological performance of the resultant EP/PU nanocomposites was investigated by a pin‐on‐disc tester, and the results showed that adding polyurethane and organically modified clay to the EP matrix had a synergistic effect on improving tribological performance of EP/PU nanocomposites. The morphologies of the worn surface were studied by scanning electron microscopy (SEM) observations, and the results indicated that the mechanism of improving tribological performance of EP/PU nanocomposites was different from that of pure EP or pure EP/PU IPNs. The thermal behavior of these nanocomposites was also investigated by thermogravimeric analysis (TGA), and the results indicated that adding organically modified clay to the matrix remedied the deterioration of the thermal degradation temperature of the interpenetrating networks. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

8.
Aluminum hypophosphite (AHP) is surface modified by melamine derivative to fabricate reactive solid flame retardant (MCAHP) for polyurethane foam. MCAHP is successfully prepared and characterized by FTIR and SEM. The flame-retarded efficiency of MCAHP in PU is higher than that of AHP. It demonstrated that MCAHP has better compatibility in PU matrix compared with AHP based on the SEM observation. After surface modification, due to the reaction between MCAHP and PU matrix, crosslinking might be formed between MCAHP and PU matrix, which contributes to the excellent compatibility of MCAHP in PU matrix, and as a result, the glass transition temperature of PU/MCAHP is 4 °C higher than that of PU/AHP. The thermal behavior of PU composites is characterized by TG and TG-FTIR, and results suggest the sublimation of melamine at about 320 °C because of the decomposition of the melamine derivative. The sublimation of melamine can consume abundant heat and dilute the oxygen concentration, which is benefit for the improvement of flame retardancy.  相似文献   

9.
A dithiocarbamate (DC)‐based polyurethane macroiniferter (PUMI) was synthesized and used to prepare physically crosslinked polyurethane‐block‐poly (acrylamide) (PU‐b‐PAAm) and polyurethane‐block‐poly(vinyl pyrrolidone) (PU‐b‐PVP) hydrogels. The success of the reactions has been confirmed by FTIR, 1H‐NMR, and 13C‐NMR Spectroscopy analyses. The number average molecular weight of the block copolymers increased linearly with conversion and copolymerization time and thus followed a “living” radical mechanism. The water transport behavior of these polyurethane‐based hydrogels such as water uptake rate, equilibrium water content (EWC), transport number (n), characteristic diffusion rate constant (K), diffusion coefficient (D), and pH effect on EWC has been investigated. The results revealed that PU‐b‐PAAm hydrogels followed Fickian diffusion suggesting diffusion controlled swelling kinetics, whereas the PU‐b‐PVP hydrogels followed non‐Fickian diffusion indicating that both diffusion and structural relaxation controlled the water transport. The PU‐b‐PAAm hydrogels showed higher swelling at both low and high pH than at a neutral pH. This is attributed to protonation of the tertiary amines of N,N′‐diethyl‐N,N′‐bis(2‐hydroxyethyl) thiuram disulfide (DHTD) at low pH and base hydrolysis of amide segments at high pH. In the thermogravimetric analysis; PUMI, PU‐b‐PVP and PU‐b‐PAAm have degraded in three distinct stages related to CS2 evolution, hard segment degradation, and soft segment degradation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 6272–6284, 2008  相似文献   

10.
In this work, ammonium polyphosphate (APP) was microencapsulated by UV‐curable epoxy acrylate (EA) resin. The resulting novel EA‐microencapsulated APP (EA‐APP) was characterized by Fourier transform infrared spectra, X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, granulometry, and thermogravimetric (TG) analysis. EA‐APP was used to flame retard polypropylene (PP). The water solubility of EA‐APP and the water resistance of PP/EA‐APP systems were investigated. The thermal stability and combustion behaviors of PP/EA‐APP composites were studied through TG and cone calorimeter (CC) tests, respectively. The water resistance test showed that the EA shell could significantly improve the water resistance of PP/APP. TG data illustrated that the char residue of EA‐APP greatly increased by 149% compared with uncoated APP, and the thermal stability of PP/EA‐APP composite was improved because of the microencapsulation of APP, with an increment of 248% for the char residue compared with PP/APP. CC test results indicated that the peak value of heat release rate, the total heat release, and the peak of smoke production rate of PP/EA‐APP decreased in comparison with PP/APP. The mechanism for the improvement of flame retardancy in CC test was discussed based on the experimental results. EA resin containing a large number of hydroxyl groups might promote the dehydration reaction in EA‐APP, which facilitated the formation of char residue and the stabilization of APP. Consequently, the flame‐retardant efficiency for APP was improved because of the presence of EA shell. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
We have demonstrated a hydrolysis reaction of polyurethane (PU) under high pressure of carbon dioxide (CO2) in water. We employed the PU sample, poly(methylene bis‐(1,4‐phenylene)hexamethylene dicarbamate), denoted as M‐PU, which was synthesized from 4,4′‐diphenyl methane diisocyanate and 1,4‐butane diol (BD). The optimum hydrolysis reaction condition was 190 °C under CO2 pressures over 4.1 MPa in water medium, and 93% hydrolysis of M‐PU was achieved. After the reaction, the water‐soluble parts were obtained, and isolated by column chromatography. The isolated products were 4,4′‐methylenedianiline (MDA) and 1,4‐butane diol (BD), which were components of repeating unit of M‐PU. In addition, the hydrolysis reaction gave no byproduct. This hydrolysis under high pressure of CO2 with water is a reaction by which M‐PU is selectively hydrolyzed into MDA and BD by cleaving urethane linkage. Moreover, the resulting hydrolyzed products were easily obtained by evaporation of aqueous layer after the reaction, indicating an efficient chemical recycling of PU was achieved. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2004–2010  相似文献   

12.
Microencapsulated ammonium polyphosphate (MCU‐APP) with urea–melamine–formaldehyde (UMF) resin is prepared by in situ polymerization, and is characterized by FTIR and XPS. The microencapsulation of APP with the UMF resin leads to a decrease in the particle's water solubility. The flame retardant actions of MCU‐APP and APP in PP are studied using limiting oxygen index (LOI) and UL‐94 test, and their thermal stability is evaluated by thermogravimetric analysis. It is found that the LOI value of the PP/MCU‐APP composite is higher than the value of the PP/APP composite. In comparison with the PP/MCU‐APP composites, the LOI values of the PP/MCU‐APP/DPER ternary composites at the same additive loading increase, and UL‐94 ratings of most ternary composites are raised to V‐0. The water‐resistant properties of the PP composites containing APP and MCU‐APP are studied. Moreover, the combustion behavior of the PP composites is investigated by the cone calorimeter. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
Poly(acryloyl chloride) (PACl) was employed to enhance the surface of multi‐walled carbon nanotubes (MWCNTs). MWCNTs were first acid treated to generate hydroxyl groups on the surface, which was reacted with PACl to obtain an encapsulation. The numerous acryloyl chloride groups on the out layer were esterified with a proper amount of ethylene glycol (EG). Subsequently, 4,4′‐methylenebis (phenylisocyanate) (MDI) and 1,4‐butanediol (BDO) were introduced into the system, and a polyurethane (PU) layer was formed in situ. The formation of PU layers on MWCNTs was confirmed by Fourier transform infrared spectrometer (FTIR) and X‐ray photoelectron spectroscope (XPS). The morphology of encapsulated MWCNTs was observed by transmission electron microscope (TEM) and scanning electron microscope (SEM). Thermo gravimetric analysis (TGA) showed the grafted polymer fraction was up to 90%. On introducing the modified MWCNTs into a PU matrix, an increase in tensile strength by 60.6% and improvement in modulus by 6.3% over neat PU was observed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4857–4865, 2008  相似文献   

14.
For enhancing the compatibility and/or the interpenetration of the simultaneous interpenetrating networks (SINs) composed of polyurethane (PU) formed with uretonimine modified 4,4′‐diphenylmethane diisocyanate and vinyl ester resin (VER), a series of graft VERs consisting of different lengths of side chains were synthesized and characterized. It was found that there exists some limited short‐range order due to the strong hydrogen bonding in the graft VER network composed of butanol side chains (BO‐g‐VER). The graft VER network composed of poly(oxypropylene) (PPO) side chains (Mn: 200, 200‐g‐VER) showed compatible system, while the VER network consisting of longer PPO grafts (Mn: 390, 390‐g‐VER) exhibited microphase separated morphology. Based upon the DSC and FTIR measurements as well as the SEM and TEM observation, the lengths of side chains existing in graft VER network have great effect on the morphologies of PU/graft VER SINs. For PU/BO‐g‐VER SINs, there has been some interpenetration between the two networks because of the miscibility between the BO‐g‐VER network and the hard segments existing in the PU network. For PU/200‐g‐VER SINs, the good compatibility and/or the interpenetration between the two phases was observed, since the long‐range ordered structure of hard segments in PU phase was greatly suppressed, resulting from the excellent miscibility between the urethane groups as well as the PPO side chains existing in the 200‐g‐VER network and those in the PU network, respectively. Thus, the strong reinforcement effect of these two graft networks on the PU network and the excellent mechanical properties of the SIN systems were observed. However, the PU/390‐g‐VER SINs showed the complicated morphologies because of existing microphase‐ separated morphology of 390‐g‐VER network in itself. In this case, the enhancement effect of such a graft VER network on the PU network is limited. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 136–144, 2000  相似文献   

15.
APP@ETA, as a new type of flame retardant, was prepared by chemically modifying ammonium polyphosphate (APP) with ethanolamine (ETA) and applied to thermoplastic polyurethane (TPU) in this study. Then, the smoke suppression properties and flame‐retardant effects of APP@ETA in TPU composites were evaluated using smoke density test, cone calorimeter test, etc. And, the thermal degradation properties of flame‐retardant TPU composites were investigated by thermogravimetric analysis/infrared spectrometry. The smoke density test results indicated that APP@ETA could obviously improve the luminous flux of TPU composites in the test with or without flame. The cone calorimeter test results showed that total smoke release, smoke production rate and smoke factor of the composites with APP@ETA were significantly decreased than those of the composites with APP. For example, when the loading of APP@ETA or APP was 12.5 wt%, the total smoke release of the sample with APP@ETA decreased to 3.5 m2/m2 from 6.0 m2/m2, which was much lower than that of the sample with APP, reduced by 41.7%. The thermogravimetric analysis results demonstrated that APP@ETA could decrease the initial decomposition temperature and improve the thermal stability at high temperature for TPU composites. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

16.
A series of novel poly(urethane amide) films were prepared by the reaction of a polyurethane (PU) prepolymer and a soluble polyamide (PA) containing aliphatic hydroxyl groups in the backbone. The PU prepolymer was prepared by the reaction of polyester polyol and 2,4‐tolylenediisocyanate and then was end‐capped with phenol. Soluble PA was prepared by the reaction of 1‐(m‐aminophenyl)‐2‐(p‐aminophenyl)ethanol and terephthaloyl chloride. The PU prepolymer and PA were blended, and the clear, transparent solutions were cast on glass substrates; this was followed by thermal treatments at various temperatures to produce reactions between the isocyanate group of the PU prepolymer and the hydroxyl group of PA. The opaque poly(urethane amide) films showed various properties, from those of plastics to those of elastomers, depending on the ratio of the PU and PA components. Dynamic mechanical analysis showed two glass‐transition temperatures (Tg's), a lower Tg due to the PU component and a higher Tg due to the PA component, suggesting that the two polymer components were phase‐separated. The rubbery plateau region of the storage modulus for the elastic films was maintained up to about 250 °C, which is considerably higher than for conventional PUs. Tensile measurements of the elastic films of 90/10 PU/PA showed that the elongation was as high as 347%. This indicated that the alloying of PU with PA containing aliphatic hydroxyl groups in the backbone improved the high‐temperature properties of PU and, therefore, enhanced the use temperature of PU. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3497–3503, 2002  相似文献   

17.
A series of polyurethane (PU) microspheres, based on 4,4′‐diphenylmethane diisocyanate and 1,4‐butanediol or a mixture of 1,4‐butanediol and polyether glycol (M = 1400) were synthesized by a one‐step method. The obtained PU microspheres were characterized by infrared spectroscopy, polarizing optical microscopy and dynamic thermogravimetry. Morphology studies of PU microspheres revealed that the material consists of spherical particles with relatively narrow particle size distribution in the range 1–100 µm and preferably between 10 to 50 µm; the obtained polymers were thermally stable up to 533–573 K. Maltogenase from Bacillus stearothermophilus was immobilized onto PU microspheres, synthesized using different ratios of components. High yield (about 100%) and efficiency (over 100%) of immobilization were obtained. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
New nanocomposites based on bacterial cellulose nanofibers (BCN) and polyurethane (PU) prepolymer were prepared and characterized by SEM, FT-IR, XRD, and TG/DTG analyses. An improvement of the interface reaction between the BCN and the PU prepolymer was obtained by a solvent exchange process. FT-IR results showed the main urethane band at 2,270 cm?1 to PU prepolymer; however, in nanocomposites new bands appear as disubstituted urea at 1,650 and 1,550 cm?1. In addition, the observed decrease in the intensity of the hydroxyl band (3,500 cm?1) suggests an interaction between BCN hydroxyls and NCO-free groups. The nanocomposites presented a non-crystalline character, significant thermal stability (up to 230 °C) and low water absorption when compared to pristine BCN.  相似文献   

19.
Various polyblends of poly(vinyl chloride) and polyurethane (PU) dissolved in a mixture of tetrahydrofuran and N,N‐dimethylformamide were produced by electrospinning, in different ratios, with several electrospinning conditions, and the relationship between morphology and mechanical behavior of the resulting fiber mats was examined in detail. The surface tension, viscosity, and electrical conductivity of polymer solutions affecting electrospinning were measured, and scanning electron microscopy (SEM) along with a universal testing machine were used to examine the family of polyblends under investigation. The SEM images demonstrated that point‐bonded structures in the fiber mats rose with increasing PU composition, and the mechanical properties of the fiber mats, as determined in a static tensile test, can be considered to have a strong effect by the point‐bonded structure. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 1256–1262, 2003  相似文献   

20.
In this work, based on castor oil (CO), flame retardant polyurethane sealants (FRPUS) with ammonium polyphosphate (APP) and aluminum hypophosphite (AHP) were prepared. The synergistic flame retardant effects between APP and AHP on flame retardancy, thermal stability, and flame retardant mechanisms of FRPUS were investigated. It was found that when the mass ratio of APP and AHP was 5:1, the limiting oxygen index (LOI) value of FRPUS increased to 35.1%, In addition, at this ratio, the parameters from cone calorimeter testing (CCT) were reduced; these parameters include peak heat release rate (PHRR), total heat release (THR), smoke production rate (SPR) and total smoke production (TSP). The thermal decomposition behavior of the FRPUS was investigated by thermogravimetric analysis (TGA). The results showed that AHP improved the thermal stability of the PUS/APP system and increased char residue at high temperatures. Moreover, the residual carbon was investigated by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and scanning electron microscope (SEM), gas phase pyrolysis products were investigated by thermogravimetric analysis/infrared spectrometry (TG-IR) and thermogravimetric analysis/mass spectrometry (TG-MS). It was observed that the flame retardant mechanisms of the APP/AHP system was the combination of gas and condensed phase flame retardant mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号