首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aliphatic polyurethanes could be obtained in high yield via a non‐isocyanate method based on the self‐polycondensation of dihydroxyurethanes obtained by the reaction of diamines and ethylene carbonate. The polycondensation under a N2 atmosphere yielded [6,2]polyurethane with a Mn value of 5300 in 87% yield. Two‐step polycondensation, consisting of the polycondensation under a N2 atmosphere followed by that under reduced pressure, was effective to improve the yield and the molecular weight up to 90% and 10,000, respectively. Although the second polycondensation step at 180 °C was accompanied by formation of urea groups, this side reaction was relatively suppressed at 150 °C. The resulting polyurethane having hydroxyl groups at both of the end groups was converted to polyurethane methacrylate via a reaction with glycidyl methacrylate, and the polyurethane methacrylate served as a crosslinker for radical polymerization of methyl acrylate. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

2.
傅强 《高分子科学》2004,(6):559-566
INTRODUCTIONPolyurethanes (PU) have been widely used for manufacturing medical devices because of their excellentmechanical properties and moderate biocompatibility[1]. Although polyurethanes used in applications requiringall of the above properties have been successful for short-term use, the problems of long-term thromboresistanceand biostability in a biological environment still remain unsolved[2,3]. A legitimate approach to improving theproperties of polyurethanes is introduction of f…  相似文献   

3.
Novel fluorinated polyurethane hybrid latexes in the size range of 40–50 nm, fluoroalkyl acrylate as fluorinated monomers, with various fluorine content (F% = 9∼26 wt%) were successfully prepared via emulsion polymerization process without traditional emulsifier. The waterborne polyurethane, which was synthesized by using isophronediisocyanate, dimethylol propionic acid, polyethylene glycols, etc., served not only as copolymerizable macromonomer but also as polymeric high molecular weight emulsifier. The structures of polyurethane macromonomer and fluorinated polyurethane were characterized by Fourier transform infrared and H1-NMR. Particle size, zeta potential, micromorphology of the latex par.ticles, and surface properties were investigated by dynamic light scattering, potential particle size analyzer, transmission electron microscopy, and contact angle measurement, respectively. Results illustrated that the advantage of this process is that the size of fluorinated polyurethane hybrid particle is less sensitive to the composition. Furthermore, it was showed that fluorinated polyurethane latex particles had core-shell structures, especially when the content of fluorine was 26.08 wt%. Moreover, there was an obvious migration of fluorinated groups to the surface during the formation of fluorinated polymer films, although fluorinated groups were covered by polyurethane in latex particles.  相似文献   

4.
Novel AB crosslinked polymer (ABCP) networks were synthesized from telechelic 4‐vinylbenzyl carbamate terminated polyurethanes and monomers such as styrene, 4‐vinylpyridine, methyl methacrylate and butyl acrylate. Telechelic 4‐vinylbenzyl carbamate terminated polyurethanes were synthesized from polypropylene glycol‐based NCO‐terminated polyurethane and vinylbenzyl alcohol. Effect of changing the molecular weight of polypropylene glycol on the static and dynamic mechanical properties of ABCP networks from polyurethane‐polymethyl methacrylate was studied in detail. Dynamic mechanical thermal analysis results show that polymethyl methacrylate and polystyrene‐based ABCPs have good damping over a broad temperature range. ABCP networks prepared from 4‐vinylbenzyl carbamate terminated polyurethane and different monomers such as methyl methacrylate, butyl acrylate and styrene exhibit single tan δmax value which implies excellent interlocking between the two polymers present in the ABCP networks. Static mechanical studies showed that methyl methacrylate and styrene‐based ABCP networks exhibit better tensile properties compared to other ABCP networks from butyl acrylate and 4‐vinyl pyridine monomers. Thermogravimetric analysis results revealed that the ABCP networks showed an improved thermal stability. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
The waterborne fluorinated polyurethane–acrylate hybrid emulsion (WFPUA) was prepared by two steps, including the preparation of the fluorinated alcohol blocked polyurethanes (FBPU) in the mixtures of vinyl monomers and fluorinated monomers and then the free radical polymerization after the pre-emulsification of the said system. The effects of hydrophilic monomer (MDEA) on the surfactivity and the emulsifiability of the FBPU were firstly reported. Then, the particle size (d), zeta potential (ζ), and viscosity (η) of the WFPUA hybrid emulsion were characterized, respectively. At the same time, the surface properties and the mechanical properties of the films were investigated. The results show that the increase of MDEA is good for the emulsifiability and the lower surface tension of the FBPU. This increase improves the stability, the ζ and η, yet decreases the d of the WFPUA emulsion. However, it has disadvantages to the hydrophobic performance of the WFPUA films. When the content of the MDEA in the WFPUA is increased from 4.67 to 14.89 %, the surface free energies are increased from 22.22 to 27.28 mJ m?2 and the attenuation rate of the contact angle–time curve is increased from 0.3051° to 0.6290°/min. Also, with the increase of MDEA, the tensile strength and the shore hardness of the film are increased, but its elongation at break is decreased. The storage moduli of the film are enhanced remarkably. Meanwhile, the glass transition temperature of the soft segment [Tg(s)] is reduced and that of the hard segment [Tg(h)] is raised.  相似文献   

6.
For the purpose of developing model coating systems, it is important to use well‐defined coating precursors. In this work, polyester oligomers were synthesized by controlled ring‐opening polymerization of ε‐caprolactone and 4‐tert‐butyl‐ε‐caprolactone via an activated monomer mechanism. These well‐defined oligomers, including 3‐armed hydroxyl‐functionalized polyesters and perfluoroalkyl‐end‐capped linear polyesters, have been obtained with controlled functionality and low‐molecular weight polydispersity and without the formation of cyclic structures, as demonstrated by MALDI‐ToF MS analyses. The polymer architecture and functionality can be tuned by using different initiating alcohols. These oligomers have been used as precursors to prepare model low surface‐energy polyurethane coatings. Upon the addition of about 1 wt % of fluorine in the polyurethane films, the advancing contact angles for water and hexadecane have been increased to 105° and 78°, respectively; the surface enrichment of fluorinated species has been confirmed by X‐ray photoelectron spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 218–227, 2008  相似文献   

7.
《先进技术聚合物》2018,29(7):1939-1952
In the current study, the novel fluorinated polyurethanes (FPUs) that contained the gemini branched fluoroether side groups on the hard segments were developed. In brief, to obtain these FPUs, a new class of fluorinated gemini diol with double‐branched fluoroether side groups was first synthesized and characterized by using Fourier transform infrared spectroscopy, nuclear magnetic resonance, and mass spectrometry. Subsequently, a series of FPUs were designed and prepared by using hexamethylene diisocyanate, poly (tetramethylene oxide glycol), 1,4‐butanediol, and fluorinated gemini diol. Analysis of the FPUs' surface properties from contact angle analysis indicated that the water contact angle increased from 81° to more than 120° when the content of fluorinated gemini diol was increased. Differential scanning calorimetry results revealed that introduction of fluorinated gemini dio decreased the Tg of FPUs, causing a better phase separation. Results from thermogravimetric analysis studies indicated the thermal stability of FPUs was improved. Scanning electron microscopy and energy dispersive X‐ray spectroscopy revealed that fluoroether groups migrate to and enrich on the outmost surface of FPUs.  相似文献   

8.
Two‐ and three‐component polyurethanes containing 1,4:3,6‐dianhydro‐D ‐sorbitol (isosorbide) derived from glucose were synthesized using n‐BuSn(?O)OH·H2O as a catalyst, and the thermal properties (Tg, Td) of the polymers were investigated by differential scanning calorimetry and thermogravimetric analysis. We carried out molds for polyurethanes, the molds of polyurethanes were obtained. The dynamic mechanical analyzes showed that the storage modulus values of the three‐component polymers were constant to a higher temperature than those of the two‐component polymers. The storage moduli (E′), loss moduli (E″), and values of tan δ for the polymers were obtained. The rigidity of three‐component polymers was increased by the introduction of bisphenol A and diphenylmethane group to two‐component polymer. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6025–6031, 2009  相似文献   

9.
A set of novel linear polyurethanes was synthesized by reaction in solution of 1,6‐hexamethylene diisocyanate (HDI) or 4,4′‐methylene‐bis(phenyl diisocyanate) with 2,3‐acetalized threitols, specifically, 2,3‐O‐methylidene‐L ‐threitol and 2,3‐O‐isopropylidene‐D ‐threitol. The polyurethanes containing acetalized threitols had weight‐average molecular weights between 40,000 and 65,000 Da. Most of them were amorphous and they displayed Tg higher than their unsubstituted analogs. Deprotection of acetalized polyurethanes by treatment with acid allowed preparing semicrystalline polyurethanes bearing two free hydroxyl groups in the repeating unit. The crystalline structure and crystallizability of the hydroxylated polyurethane made from HDI were investigated taken as reference the polyurethane made from 1,4‐butanediol and HDI. The hydrolytic degradability of threitol derived polyurethanes was comparatively evaluated under a variety of conditions. Highest degradation rates were obtained upon incubation at pH 10 at temperatures above Tg, the aliphatic hydroxylated polyurethane being the fastest degrading compound. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 7996–8012, 2008  相似文献   

10.
New segmented polyurethanes with perfluoropolyether (PFPE) and poly(ethylene oxide) blocks were synthesized from a fluorinated macrodiol mixed with poly(ethylene glycol) (PEG) in different ratios as a soft segment, 2,4‐toluene diisocyanate as a hard segment, and ethylene glycol as a chain extender. Fourier transform infrared, NMR, and thermal analysis [differential scanning calorimetry and thermogravimetric analysis (TGA)] were used to characterize the structures of these copolymers. The copolymer films were immersed in a liquid electrolyte (1 M LiClO4/propylene carbonate) to form gel‐type electrolytes. The ionic conductivities of these polymer electrolytes were investigated through changes in the copolymer composition and content of the liquid electrolyte. The relative molar ratio of PFPE and PEG in the copolymer played an important role in the conductivity and the capacity to retain the liquid electrolyte solution. The copolymer with a 50/50 PFPE/PEG ratio, having the lowest decomposition temperature shown by TGA, exhibited the highest ionic conductivity and lowest activation energy for ion transportation. The conductivities of these systems were about 10?3 S cm?1 at room temperature and 10?2 S cm?1 at 70 °C; the films immersed in the liquid electrolyte with an increase of 70 wt % were homogenous with good mechanical properties. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 486–495, 2002; DOI 10.1002/pola.10119  相似文献   

11.
Novel AB2‐type azide monomers such as 3,5‐bis(4‐methylolphenoxy)carbonyl azide (monomer 1) , 3,5‐bis(methylol)phenyl carbonyl azide (monomer 2) , 4‐(methylol phenoxy) isopthaloyl azide (monomer 3) , and 5‐(methylol) isopthaloyl azide (monomer 4) were synthesized. Melt and solution polymerization of these monomers yielded hydroxyl‐ and amine‐terminated hyperbranched polyurethanes with and without flexible ether groups. The structures of theses polymers were established using FT‐IR and NMR spectroscopy. The molecular weights (Mw) of the polymers were found to vary from 3.2 × 103 to 5.5 × 104 g/mol depending on the experimental conditions used. The thermal properties of the polymers were evaluated using TGA and DSC: the polymer obtained from monomer ( 1 ) exhibited lowest Tg and highest thermal stability and the polymer obtained from monomer ( 2 ) registered the highest Tg and lowest thermal stability. All the polymers displayed fluorescence maxima in the 425–525 nm range with relatively narrow peak widths indicating that they had pure and intense fluorescence. Also, the polymers formed charge transfer (CT) complexes with electron acceptor molecules such as 7,7,8,8‐tetracyano‐quino‐dimethane (TCNQ) and 1,1,2,2‐tetracyanoethane (TCNE) as evidenced by UV‐visible spectra. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3337–3351, 2009  相似文献   

12.
Solvent-induced self-organization approach was developed, for the first time, to produce polyurethane microporous templates and higher ordered morphologies such as micro or nanometer-sized polymeric hexagons and spheres. A novel melt transurethane methodology was designed and developed for synthesizing new class of cycloaliphatic polyurethanes under nonisocyanate and solvent-free conditions. In this new process, a diurethane monomer was polycondensed with equimolar amounts of diol in presence of Ti(OBu)4 as catalyst with the removal of low boiling alcohol from the equilibrium. The hydrogen bonding of the polyurethanes are very unique to their chemical structure and they undergo selective phase-separation process in solution to produce hexagonally packed microporous templates. The increase of water content in the polymer solution enhances the phase-separation process and the micro pores coalesce to isolate the encapsulated polymer matrix into polymeric hexagons or densely packed solid spheres. The concentration-dependent solution FTIR and 1H NMR of the polyurethanes revealed that the polymers possessing higher H-bonding association constants (K) have greater tendency to undergo solvent-induced self-organization phenomena. The mechanism of solvent-evaporation process indicated that only microporous polyurethanes have tendency to form higher ordered hexagons and spheres whereas others failed to show any new morphology. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2351–2366, 2007  相似文献   

13.
In this study, a fluoro-diol, trifluoroethyl-2-methylpropanoate-β-dihydroxy ethylamine (TFMDA), was successfully synthesized by Michael Addition reaction between trifluoroethyl-2-methacrylate (TFEMA) and diethanolamine (DEA). The chemical structures were characterized by FT-IR and 1H NMR methods. And then by the reaction of dicyclohexylmethylmethane-4,4′- diisocyanate (HMDI), poly(propylene glycol) (PPG), 2,2-dimethylolbutanoic acid (DMBA), diethylene glycol (DEG) and trifluoroethyl-2-methylpropanoate-β-dihydroxyethylamine (TFMDA), fluorinated waterborne polyurethane emulsions with different content of COOH and TFMDA were successfully prepared. It was demonstrated that all the polyurethane emulsions exhibited enhanced storage stability and all the polyurethane films possessed high elongation at break and exceeded 1000%. Addition of organic fluorine obviously improved the water-resistance property of the waterborne polyurethane films.  相似文献   

14.
Novel linear carbohydrate‐derived [m,n]‐polyurethanes are successfully prepared using D ‐mannitol as renewable and low cost starting material. The key comonomer, 1,6‐di‐O‐phenylcarbonyl‐2,3,4,5‐tetra‐O‐methyl‐D ‐mannitol is polymerized with a diamine synthesized from D ‐mannitol or with alkylenediamines. These polymerization reactions afford, respectively, a [6,6]‐polyurethane entirely based on a carbohydrate derivative or [m,n]‐polyurethanes constituted by a poly‐O‐methyl substituted unit alternating with a polymethylene chain. All these polymers are stereoregular, as result of the C2 axis of symmetry of mannitol. The optically active polyurethanes are characterized by standard methods (FTIR, RMN, GPC, TGA, and DSC). Thus, GPC analysis reveals weight‐average molecular weights between 18,000 and 25,000 Da. Thermal studies (DSC) indicate that the polymers obtained are amorphous materials with Tg values dependent on the structure and chain length of the diamine constituent. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

15.
Starting from 3,5‐diamino benzoic acid, 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzyl ether, an AB2‐type blocked isocyanate monomer with flexible ether group, and 2‐hydroxy propyl[3,5‐bis{(benzoxycarbonyl)imino}]benzoate, an AB2‐type blocked isocyanate monomer with ester group, were synthesized for the first time. Using the same starting compound, 3,5‐bis{(benzoxycarbonyl)imino}benzylalcohol, an AB2‐type blocked isocyanate monomer, was synthesized through a highly efficient short‐cut route. Step‐growth polymerization of these monomers at individually optimized experimental conditions results in the formation of hyperbranched polyurethanes with and without ether and ester groups. Copolymerizations of these monomers with functionally similar AB monomers were also carried out. The molecular weights of the polymers were determined using GPC and the values (Mw) were found to vary from 1.5 × 104 to 1.2 × 106. While hyperbranched polyurethanes having no ether or ester group were found to be thermally stable up to 217 °C, hyperbranched poly(ether–urethane)s and poly(ester–urethane)s were found to be thermally stable up to 245 and 300 °C, respectively. Glass transition temperature (Tg) of polyurethane was reduced significantly when introducing ether groups into the polymer chain, whereas Tg was not observed even up to 250 °C in the case of poly(ester–urethane). Hyperbranched polyurethanes derived from all the three different AB2 monomers were soluble in highly polar solvents and the copolymers showed improved solubility. Polyethylene glycol monomethyl ether of molecular weight 550 and decanol were used as end‐capping groups, which were seen to affect the thermal, solution, and solubility properties of polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3877–3893, 2007  相似文献   

16.
The effects of soft segment length on the variations in morphology, surface composition, and hydrophilicity have been studied in fluorinated polyurethanes (FPUs) and correlated with their preliminary blood compatibility as evidenced by in vitro platelet adhesion experiments. The fluorinated polyurethanes were obtained using hexamethylene diisocyanate (HDI) and chain extender of 2,2,3,3-tetrafluoro-1,4-butanediol (TF) as the hard segment as well as various soft segments—polytetramethyl oxides (PTMO) with molecular weights of 650, 1000, 1400, and 2000. The increased phase separation in hard-segment domains with lengthening soft segment was observed by FT-IR, which is believed to result in enhanced strength of hydrogen bonds and good hard-segment order arrangement. Thin-film XRD results indicate at least three lateral distances existing between adjacent hard segments in the crystallized hard segment. Their distribution depends strongly on the length of soft segment. Lengthening soft segment promotes the formation of dense arrangement of crystallized hard segments. Compared with the effect of phase separation, surface composition was found to exert a major influence on the preliminary blood compatibility of fluorinated polyurethanes. Increasing fluorine content by decreasing soft segment length promotes reduction in platelet adhesion and activation on polyurethane surfaces.  相似文献   

17.
Syntheses of various fluorine‐based surfactants, namely fluorinated‐segment‐containing block co‐oligomers, were achieved by the radical polymerization of mainly acrylate‐based monomers. These types of surfactants serve as stabilizers for supercritical carbon dioxide (scCO2) media based applications, for which the effective solubilization of materials in the supercritical phase is generally not possible because of solubility problems faced when CO2 is involved. Initially, a difunctional fluorinated initiator was synthesized in two steps. First, 4,4′‐azobis‐4‐cyanovaleric acid was chlorinated with SOCl2, and then the product, 4,4′‐azobis‐4‐cyanovaleryl chloride, was reacted with a fluorinated alcohol to obtain the initiator for the polymerization reactions. The synthesized triblock co‐oligomers consisted of fluorinated side blocks and a hydrocarbon intermediate block. Efficient solubilization of the materials in scCO2 was observed. It was experimentally shown that the solubility efficiency was affected by specific interactions between CO2 and the oligomers, and these were determined by the nature and size of the inner block and by the chain length of the fluorinated side blocks in comparison with the inner block. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5312–5322, 2005  相似文献   

18.
符柳娃  苏嘉辉  严佳进  张婷  杨妍  刘晓暄 《应用化学》2018,35(12):1434-1441
选取十二烷基硫酸钠(SDS),辛基苯基聚氧乙烯醚(OP-10)为复合乳化剂,过硫酸钾(KPS)为引发剂,将2-(全氟己基)乙基甲基丙烯酸酯(PFM)与丙烯酸酯类单体采用预乳化-半连续种子乳液聚合法进行乳液共聚,再将羟基螺吡喃(SPOH)与乳液进行物理共混,制得光致变色含氟丙烯酸酯乳液。 通过多种表征手段研究丙烯酸正丁酯(n-BA)和甲基丙烯酸甲酯(MMA)软硬单体的质量比,SPOH的用量对聚合反应和乳胶膜性能的影响。 结果表明,加入含氟单体后乳胶膜与水、油的接触角提高,热稳定性提高;加入SPOH的质量分数为1.25%时,乳胶膜具有较好的光致变色性能。  相似文献   

19.
The partly fluorinated monomers, 2,2,2‐trifluoroethyl methacrylate (3FM), 2,2,3,3,4,4,5,5‐octafluoropentyl methacrylate (8FM), and 1,1,2,2‐tetrahydroperfluorodecyl methacrylate (17FM) have been used in the preparation of block copolymers with methyl methacrylate (MMA), 2‐methoxyethyl acrylate (MEA), and poly(ethylene glycol) methyl ether methacrylate (PEGMA) by Atom Transfer Radical Polymerization. A kinetic study of the 3FM homopolymerization initiated with ethyl bromoisobutyrate and Cu(I)Br/N‐(n‐propyl)‐2‐pyridylmethanimine reveals a living/controlled polymerization in the range 80–110 °C, with apparent rate constants of 1.6 · 10−4 s−1 to 2.9 · 10−4 s−1. Various 3FM containing block copolymers with MMA are prepared by sequential monomer addition or from a PMMA macroinitiator in all cases with controlled characteristics. Block copolymers of 3FM and PEGMA resulted in block copolymers with PDI < 1.22, whereas block copolymers from 3FM and MEA have less controlled characteristics. The block copolymers based on MMA with 8FM and 17 FM have PDI's < 1.30. The glass transition temperatures of the block copolymers are dominated by the majority monomer, as the sequential monomer addition results in too short pure blocks to induce observable microphase separation. The thermal stability of the fluorinated poly((meth)acrylate)s in inert atmosphere is less than that of corresponding nonfluorinated poly((meth)acrylate)s. The presence of fluorinated blocks significantly increases the advancing water contact angle of thin films compared to films of the nonfluorinated poly((meth)acrylate)s. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 8097–8111, 2008  相似文献   

20.
含氟聚氨酯的研究进展   总被引:6,自引:0,他引:6  
综述了溶剂性、水性含氟聚氨酯的合成及研究,并进行了讨论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号