首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Two different techniques for the implementation of the linear and nonlinear slip boundary conditions into a finite volume method based numerical code are presented. For the linear Navier slip boundary condition, an implicit implementation in the system of equations is carried out for which there is no need for any relaxation, especially when handling high slip coefficients. For three different nonlinear slip boundary conditions, two different methods are devised, one based on solving a transcendental equation for the boundary and the other on the linearization of the slip law. For assessment purposes, comparison is made between these new methods and the usual iterative process. With these new methods, the convergence difficulties, typical of the iterative procedure, are eliminated, and for some of the test cases, the convergence rate even increased with the slip velocity. The details of these implementations are given first for a simple geometry using orthogonal meshes and Cartesian coordinates followed by their generalization to non‐Cartesian coordinates and nonorthogonal meshes. The developed code was tested in the benchmark slip‐stick and 4:1 contraction flows, evidencing the robustness of the proposed procedures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

2.
A variant of immersed boundary‐lattice Boltzmann method (IB‐LBM) is presented in this paper to simulate incompressible viscous flows around moving objects. As compared with the conventional IB‐LBM where the force density is computed explicitly by Hook's law or the direct forcing method and the non‐slip condition is only approximately satisfied, in the present work, the force density term is considered as the velocity correction which is determined by enforcing the non‐slip condition at the boundary. The lift and drag forces on the moving object can be easily calculated via the velocity correction on the boundary points. The capability of the present method for moving objects is well demonstrated through its application to simulate flows around a moving circular cylinder, a rotationally oscillating cylinder, and an elliptic flapping wing. Furthermore, the simulation of flows around a flapping flexible airfoil is carried out to exhibit the ability of the present method for implementing the elastic boundary condition. It was found that under certain conditions, the flapping flexible airfoil can generate larger propulsive force than the flapping rigid airfoil. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A higher‐order finite analytic scheme based on one‐dimensional finite analytic solutions is used to discretize three‐dimensional equations governing turbulent incompressible free surface flow. In order to preserve the accuracy of the numerical scheme, a new, finite analytic boundary condition is proposed for an accurate numerical solution of the partial differential equation. This condition has higher‐order accuracy. Thus, the same order of accuracy is used for the boundary. Boundary conditions were formulated and derived for fluid inflow, outflow, impermeable surfaces and symmetry planes. The derived boundary conditions are treated implicitly and updated with the solution of the problem. The basic idea for the derivation of boundary conditions was to use the discretized form of the governing equations for the fluid flow simplified on the boundaries and flow information. To illustrate the influence of the higher‐order effects at the boundaries, another, lower‐order finite analytic boundary condition, is suggested. The simulations are performed to demonstrate the validity of the present scheme and boundary conditions for a Wigley hull advancing in calm water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a novel meshless Galerkin scheme for modeling incompressible slip Stokes flows in 2D. The boundary value problem is reformulated as boundary integral equations of the first kind which is then converted into an equivalent variational problem with constraint. We introduce a Lagrangian multiplier to incorporate the constraint and apply the moving least‐squares approximations to generate trial and test functions. In this boundary‐type meshless method, boundary conditions can be implemented exactly and system matrices are symmetric. Unlike the domain‐type method, this Galerkin scheme requires only a nodal structure on the bounding surface of a body for approximation of boundary unknowns. The convergence and abstract error estimates of this new approach are given. Numerical examples are also presented to show the efficiency of the method. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
Two practical techniques are proposed in this paper to simulate a flow contained in a plenum with a downstream tube bundle under a PC environment. First, a technique to impose slip wall conditions on smooth‐faced planes and sharp edges is proposed to compensate for the mesh coarseness relative to boundary layer thickness. In particular, a new type of Poisson equation is formulated to simultaneously satisfy both such velocity boundary conditions on walls and the incompressibility constraint. Second, a numerical model for a downstream tube bundle is proposed, where hydraulic resistance in a tube is imposed as a traction boundary condition on a fluid surface contacting the tube bundle end. The effectiveness of the techniques is numerically demonstrated in the application to a flow in a condenser water box. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, using mixture theory we study the flow of a dense suspension, composed of solid particles and a fluid; the emphasis is on the influence of the slip boundary condition and the effect of normal stress differences. Very little work has been done considering both the slip at the walls and the normal stress effects in the frame of a two-component flow. In this paper, the stress tensor for the solid component is modeled as a nonlinear fluid which not only includes the viscous effects but also the normal stress effects; the fluid constituent is modeled as a viscous fluid. We look at the flow between two flat plates.  相似文献   

7.
The stability and accuracy of radiation type non‐reflective outflow boundary conditions, as well as the standard Neumann boundary condition with zero normal derivative, have been compared for the numerical simulation of a turbulent axisymmetric plume with Reynolds number of 7700 and Prandtl number of 0.71. Comparison of the performance of the boundary conditions with respect to each other, and to the results obtained for an extended domain, shows that a one‐dimensional scheme in which advection and diffusion terms are included in the radiation equation is the optimum approach for the plume simulation. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Wall slip is often observed in a highly sheared fluid film in a solid gap. This makes a difficulty in mathematical analysis for the hydrodynamic effect because fluid velocity at the liquid–solid interfaces is not known a priori. If the gap has a convergent–divergent wedge, a free boundary pressure condition, i.e. Reynolds pressure boundary condition, is usually used in the outlet zone in numerical solution. This paper, based on finite element method and parametric quadratic programming technique, gives a numerical solution technique for a coupled boundary non‐linearity of wall slip and free boundary pressure condition. It is found that the numerical error decreases with the number of elements in a negative power law having an index larger than 2. Our method does not need an iterative process and can simultaneously gives rise to fluid film pressure distribution, wall slip velocity and surface shear stress. Wall slip always decreases the hydrodynamic pressure. Large wall slip even causes a null hydrodynamic pressure in a pure sliding solid gap. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

9.
The finite element method is employed to approximate the solutions of the Helmholtz equation for water wave radiation and scattering in an unbounded domain. A discrete, non‐local and non‐reflecting boundary condition is specified at an artificial external boundary by the DNL method, yielding an equivalent problem that is solved in a bounded domain. This procedure formulates a boundary value problem in a bounded region by imposing a relation in the discrete medium between the nodal values at the two last layers. For plane geometry, this relation can be found by straightforward eigenvalue decomposition. For circular geometry, the plane condition is applied at the external layer and this condition is condensed through a structured annular region, resulting in a condition at an inner radius. Exterior problems with a bounded internal physical obstacle are considered. It is well‐known that these kind of problems are well‐posed, and have a unique solution. Numerical studies based on standard Galerkin methodology examine the dependence of the DNL condition with respect to the circular annular region width. The DNL condition is compared with local boundary conditions of several orders. Numerical examples confirm the important improvement in accuracy obtained by the DNL method over standard conditions. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

10.
A method for direct numerical analysis of three‐dimensional deformable particles suspended in fluid is presented. The flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method (LBM), where each solid particle is mapped onto a Lagrangian frame moving continuously through the domain. Instead of the bounce‐back method, an external boundary force (EBF) is used to impose the no‐slip boundary condition at the fluid–solid interface for stationary or moving boundaries. The EBF is added directly to the lattice Boltzmann equation. The motion and orientation of the particles are obtained from Newtonian dynamics equations. The advantage of this approach is outlined in comparison with the standard and higher‐order interpolated bounce‐back methods as well as the LBM immersed‐boundary and the volume‐of‐fluid methods. Although the EBF method is general, in this application, it is used in conjunction with the lattice–spring model for deformable particles. The methodology is validated by comparing with experimental and theoretical results. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper, an improved immersed boundary‐lattice Boltzmann method based on the force correction technique is presented for fluid‐structure interaction problems including the moving boundary interfaces. By introducing a force correction coefficient, the non‐slip boundary conditions are much better enforced compared with the conventional immersed boundary‐lattice Boltzmann methods. In addition, the implicit and iterative calculations are avoided; thus, the computational cost is reduced dramatically. Several numerical experiments are carried out to test the efficiency of the method. It is found that the method has the second‐order accuracy, and the non‐slip boundary conditions are enforced indeed. The numerical results also show that the present method is a suitable tool for fluid‐structure interaction problems involving complex moving boundaries.  相似文献   

12.
We prove convergence of the finite element method for the Navier–Stokes equations in which the no‐slip condition and no‐penetration condition on the flow boundary are imposed via a penalty method. This approach has been previously studied for the Stokes problem by Liakos (Weak imposition of boundary conditions in the Stokes problem. Ph.D. Thesis, University of Pittsburgh, 1999). Since, in most realistic applications, inertial effects dominate, it is crucial to extend the validity of the method to the nonlinear Navier–Stokes case. This report includes the analysis of this extension, as well as numerical results validating their analytical counterparts. Specifically, we show that optimal order of convergence can be achieved if the computational boundary follows the real flow boundary exactly. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

13.
使用界面跟踪法FTM(Front Tracking Method)对二维不混溶、不可压缩流体的K-H(Kelvin-Helmholtz)不稳定性进行数值模拟。研究表明,速度梯度层越厚,界面在水平分量中移动越快,卷起越少;初始水平速度差越大,界面卷起越多,内扰动增长速度越快,K-H不稳定性的特征形式更加明显;此外,在Neumann边界条件(即无滑移边界条件)下界面的扰动发展得比Dirichlet边界条件(即对称边界条件)下的扰动快。由于Dirichlet边界中的边界层,在开始时刻涡量扩展到两侧,影响了K-H不稳定性的生长速率;而在Neumann边界条件下涡量由于初始水平速度差,在界面中心聚集。最后,研究了不同边界条件下各种理查德森数对K-H不稳定性的影响。  相似文献   

14.
This work proposes an innovative numerical method for simulating the interaction of fluid with irregularly shaped stationary structures based on Cartesian grids. Instead of prescribing an artificial force to enforce the no‐slip boundary condition at the solid–fluid interface, this work imposes two boundary velocities, referred to as the solid and mass‐conserving boundary velocities, to satisfy the no‐slip boundary condition and mass conservation in the ghost cells around the immersed solid boundary. Both the traditional level set method [41] and the hybrid particle level set method [45] were used to represent the solid boundary and the complex free‐surface evolution, respectively. Consequently, the boundary velocities close to the immersed solid boundary can be determined in terms of the level set function and the neighboring fluid velocity. The projection method is further modified to incorporate the solid and mass‐conserving boundary velocities into the solution algorithm. A series of numerical experiments were conducted to demonstrate the feasibility of the proposed method. They involved uniform flow past a stationary circular cylinder and the propagation of water waves over a submerged trapezoidal breakwater. Comparisons between the numerical results and experimental data showed very good agreement in all cases of interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
流体流动的边界滑移问题研究进展   总被引:9,自引:1,他引:8  
吴承伟  马国军  周平 《力学进展》2008,38(3):265-282
最近十几年来,随着现代微/纳米测试以及分子动力学模拟技术的出现和发展,流体流动的边界滑移问题研究获得了突 飞猛进的发展.边界滑移相关研究大体可分为3个方面: 实验、分子动力学模拟和理论数值分析,前两者主要以发现边界滑移现象、探索边界滑移的产生机理以及各因素对边 界滑移的影响规律为主要研究目的,而后者主要研究边界滑移的物理模型、相关问题的计算方法以及边界滑移对流体系 统流体动力学行为的影响.本文首先简要回顾了液体流动的边界滑移及其相关问题的早期研究历史,随后对边界滑移问题 的研究现状进行了综述,最后展望了该领域今后的研究重点及其应用前景.  相似文献   

16.
In this paper, the artificial boundary method is considered for the numerical simulation of the exterior Stokes flow in three dimensions. First, an exact relation between the normal stress and the velocity field is obtained on a spherical artificial boundary. With the relation specified on the artificial boundary, the original problem is reduced to a new one only defined on a finite domain. After that, an variational problem equivalent to the reduced problem is derived. By truncating the series term in the formulation, a sequence of approximate variational problems are obtained, which can then be solved with a suitable finite‐element scheme. Finally, a numerical example is presented to show the performance of the method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, an immersed boundary method for simulating inviscid compressible flows governed by Euler equations is presented. All the mesh points are classified as interior computed points, immersed boundary points (interior points closest to the solid boundary), and exterior points that are blanked out of computation. The flow variables at an immersed boundary point are determined via the approximate form of solution in the direction normal to the wall boundary. The normal velocity is evaluated by applying the no‐penetration boundary condition, and therefore, the influence of solid wall in the inviscid flow is taken into account. The pressure is computed with the local simplified momentum equation, and the density and the tangential velocity are evaluated by using the constant‐entropy relation and the constant‐total‐enthalpy relation, respectively. With a local coordinate system, the present method has been extended easily to the three‐dimensional case. The present work is the first endeavor to extend the idea of hybrid Cartesian/immersed boundary approach to compressible inviscid flows. The tedious task of handling multi‐valued points can be eliminated, and the overshoot resulting from the extrapolation for the evaluation of flow variables at exterior points can also be avoided. In order to validate the present method, inviscid compressible flows over fixed and moving bodies have been simulated. All the obtained numerical results show good agreement with available data in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
We present a lattice Boltzmann‐BGK (LBGK) algorithm for a diffusion equation together with a Robin boundary condition, which we apply in the case of nuclear magnetic resonance relaxation. The boundary condition we employ is independent of the direction of the wall. This makes the algorithm very suitable for complicated geometries, such as porous media. We discuss the effect of lattice topology by using, respectively, an eight‐speed and a four‐speed lattice. The numerical algorithm is compared with analytical results for a square and an equilateral triangle. The eight‐speed lattice performs well in both cases. The four‐speed lattice performs well for the square, but fails in the case of an equilateral triangle. Comparison with a random walk algorithm is also included. The LBGK algorithm presented here can also be used for a convective diffusion problem if the speed of the fluid can be neglected close to the boundary. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Application of the three‐point fourth‐order compact scheme to spatial differencing of the vorticity‐stream function‐density formulation of the two‐dimensional incompressible Boussinesq equations is presented. The details for the derivation of difference relations at boundaries to generate accurate and stable solutions are also given. To assess the numerical accuracy, two linear prototype test problems with known exact solution are used. The two‐dimensional planar and cylindrical lock‐exchange flow configurations are used to conduct the numerical experiments for the Boussinesq equations. Quantitative measures for the two linear prototype test problems and comparison of the results of this work with the published results for the planar lock‐exchange flow indicates the validity and accuracy of the three‐point fourth‐order compact scheme for numerical solution of two‐dimensional incompressible Boussinesq equations. In addition, the study of using different high‐order numerical boundary conditions for the implementation of the no‐penetration boundary condition for the density at no‐slip walls is considered. It is shown that the numerical solution is sensitive to the choice of difference relation for the density at boundaries and using an inappropriate difference relation leads to spurious numerical solution. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
The free (or open) boundary condition (FBC, OBC) was proposed by Papanastasiou et al. (A new outflow boundary condition, International Journal for Numerical Methods in Fluids, 1992; 14:587–608) to handle truncated domains with synthetic boundaries where the outflow conditions are unknown. In the present work, implementation of the FBC has been tested in several benchmark problems of viscous flow in fluid mechanics. The FEM is used to provide numerical results for both cases of planar and axisymmetric domains under laminar, isothermal or non‐isothermal, steady‐state conditions, for Newtonian fluids. The effects of inertia, gravity, compressibility, pressure dependence of the viscosity, slip at the wall, and surface tension are all considered individually in the extrudate‐swell benchmark problem for a wide range of the relevant parameters. The present results extend previous ones regarding the applicability of the FBC and show cases where the FBC is inappropriate, namely in the extrudate‐swell problem with gravity or surface‐tension effects. Particular emphasis has been given to the pressure at the outflow, which is the most sensitive quantity of the computations. In all cases where FBC is appropriate, excellent agreement has been found in comparisons with results from very long domains. The formulation for Picard‐type iterations is given in some detail, and the differences with the Newton–Raphson formulation are highlighted regarding some computational aspects. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号