首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Uracil DNA glycosylase (UNG) is an important DNA repair enzyme that recognizes and excises uracil bases in DNA using an extrahelical recognition mechanism. It is emerging as a desirable target for small-molecule inhibitors given its key role in a wide range of biological processes including the generation of antibody diversity, DNA replication in a number of viruses, and the formation of DNA strand breaks during anticancer drug therapy. To accelerate the discovery of inhibitors of UNG we have developed a uracil-directed ligand tethering strategy. In this efficient approach, a uracil aldehyde ligand is tethered via alkyloxyamine linker chemistry to a diverse array of aldehyde binding elements. Thus, the mechanism of extrahelical recognition of the uracil ligand is exploited to target the UNG active site, and alkyloxyamine linker tethering is used to randomly explore peripheral binding pockets. Since no compound purification is required, this approach rapidly identified the first small-molecule inhibitors of human UNG with micromolar to submicromolar binding affinities. In a surprising result, these uracil-based ligands are found not only to bind to the active site but also to bind to a second uncompetitive site. The weaker uncompetitive site suggests the existence of a transient binding site for uracil during the multistep extrahelical recognition mechanism. This very general inhibitor design strategy can be easily adapted to target other enzymes that recognize nucleobases, including other DNA repair enzymes that recognize other types of extrahelical DNA bases.  相似文献   

2.
Base flipping, the conformational change of a nucleobase to an extrahelical position, is a key step in the enzymatic repair of damaged DNA. An assay that can detect the flipped-out species in free solution without covalent modification of the DNA would be desirable. The design and synthesis of a simple, sensitive, and rapid assay using specific noncovalent binding to pyrimidines by zinc-cyclen and a commonly used fluorescent reporter group, dansyl, is reported. The binding of the zinc-cyclen unit to a flipped-out thymine base results in a change in the fluorescent properties of the dansyl group that is distinct from nonspecific binding to duplex DNA or intercalation into either the flipped-in or flipped-out species. The assay was tested using fluorescence spectroscopy and detection at 533 +/- 5 nm with normal and abasic duplex DNA as negative and positive controls. The data obtained are fitted to a one-site binding model to determine the equilibrium constant for the two-step process involving base flipping and binding to be approximately 10-6 M.  相似文献   

3.
O(6)-alkylguanine-DNA alkyltransferases directly reverse the alkylation on the O(6) position of guanine in DNA. This group of proteins has been proposed to repair the damaged base in an extrahelical manner; however, the detailed mechanism is not understood. Here we applied a chemical disulfide crosslinking method to probe the damage-searching mechanism of two O(6)-alkylguanine-DNA alkyltransferases, the Escherichia coli C-Ada and the human AGT. Crosslinking reactions with different efficiency occur between the reactive Cys residues of both proteins and a modified cytosine bearing a thiol tether in various DNA probes. Our results indicate that it is not necessary for these proteins to actively flip out every base to find damage. Instead they can locate potential lesions by simply capturing a lesioned base that is transiently extrahelical or sensing the unstable nature of a damaged base pair.  相似文献   

4.
Fpg is a bacterial base excision repair enzyme that removes oxidized purines from DNA. This work shows that Fpg and its eukaryote homolog Ogg1 recognize with high affinity FapydG and bulky N7-benzyl-FapydG (Bz-FapydG). The comparative crystal structure analysis of stable complexes between Fpg and carbocyclic cFapydG or Bz-cFapydG nucleoside-containing DNA provides the molecular basis of the ability of Fpg to bind both lesions with the same affinity and to differently process them. To accommodate the steric hindrance of the benzyl group, Fpg selects the adequate rotamer of the extrahelical Bz-cFapydG formamido group, forcing the bulky group to go outside the binding pocket. Contrary to the binding mode of cFapydG, the particular recognition of Bz-cFapydG leads the BER enzymes to unproductive complexes which would hide the lesion and slow down its repair by the NER machinery.  相似文献   

5.
One nanosecond molecular dynamics (MD) simulation was performed for two DNA segments each composed of 30 base pairs. In one DNA segment the native guanines at nucleotides positions 17 and 19 were replaced with two 8-oxoguanines (8-oxoG) (8-oxoG is mutagenic DNA oxo-lesion). The analysis of results was focused on the electrostatic energy that is supposed to be significant factor causing the disruption of DNA base stacking in DNA duplex and may also serve as a signal toward the repair enzyme informing the presence of the lesion. The repulsive interaction between 8-oxoG and the entire DNA molecule was observed, which caused the extrahelical position of 8-oxoG (position 19). The repulsive electrostatic interaction between both 8-oxoG lesions contributed to the flipping out of one 8-oxoG and to the local instability of the lesioned DNA region. The electrostatic potential at the surface of DNA close to the lesions has more negative value than the same region on the native DNA. This electrostatic potential may signal presence of the lesion to the repair enzyme. In the simulation of native DNA segment, no significant structural changes were observed and B-DNA structure was well preserved throughout the MD simulation.  相似文献   

6.
AlkB repair enzymes are important nonheme iron enzymes that catalyse the demethylation of alkylated DNA bases in humans, which is a vital reaction in the body that heals externally damaged DNA bases. Its mechanism is currently controversial and in order to resolve the catalytic mechanism of these enzymes, a quantum mechanics/molecular mechanics (QM/MM) study was performed on the demethylation of the N1‐methyladenine fragment by AlkB repair enzymes. Firstly, the initial modelling identified the oxygen binding site of the enzyme. Secondly, the oxygen activation mechanism was investigated and a novel pathway was found, whereby the catalytically active iron(IV)–oxo intermediate in the catalytic cycle undergoes an initial isomerisation assisted by an Arg residue in the substrate binding pocket, which then brings the oxo group in close contact with the methyl group of the alkylated DNA base. This enables a subsequent rate‐determining hydrogen‐atom abstraction on competitive σ‐ and π‐pathways on a quintet spin‐state surface. These findings give evidence of different locations of the oxygen and substrate binding channels in the enzyme and the origin of the separation of the oxygen‐bound intermediates in the catalytic cycle from substrate. Our studies are compared with small model complexes and the effect of protein and environment on the kinetics and mechanism is explained.  相似文献   

7.
Base flipping is the movement of a DNA base from an intrahelical, base-stacked position to an extrahelical, solvent-exposed position. As there are favorable interactions for an intrahelical base, both hydrogen bonding and base stacking, base flipping is expected to be energetically prohibitive for an undamaged DNA duplex. For damaged DNA bases, however, the energetic cost of base flipping may be considerably lower. Using a selective, non-covalent assay for base flipping, the sequence dependence of base flipping in DNA sequences containing an abasic site has been studied. The dissociation constants of the zinc-cyclen complex to small molecules and single strands of DNA as well as the equilibrium constants for base flipping have been determined for these sequences. Molecular dynamics simulations of the zinc-cyclen complex bound to both single- and double-stranded DNA have been performed in an attempt to rationalize the differences in the dissociation constants obtained for the two systems. The results are compared to previous studies of base flipping in DNA containing an abasic site.  相似文献   

8.
Molecular mechanics calculations were performed with the JUMNA program on d(GCGTGOGTGCG) · d(CGCACTCACGC) where “O” is a modified abasic site: 3-hydroxy-2-(hydroxymethyl)tetrahydrofuran. From energy minimizations, for intrahelical or extrahelical positions of the unpaired thymine, various structures with different curvatures were obtained. Dynamical properties of this abasic sequence were also investigated through the controlled studies of DNA bending. Poisson-Boltzmann calculations were used to mimic the electrostatic effect of solvent on this sequence. The lowest energy structures show an acceptable agreement with experimental data. Received: 1 June 1998 / Accepted: 17 September 1998 / Published online: 10 December 1998  相似文献   

9.
Direct measurement of DNA repair enzyme activities is important both for the basic study of cellular repair pathways as well as for potential new translational applications in their associated diseases. NTH1, a major glycosylase targeting oxidized pyrimidines, prevents mutations arising from this damage, and the regulation of NTH1 activity is important in resisting oxidative stress and in suppressing tumor formation. Herein, we describe a novel molecular strategy for the direct detection of damaged DNA base excision activity by a ratiometric fluorescence change. This strategy utilizes glycosylase‐induced excimer formation of pyrenes, and modified DNA probes, incorporating two pyrene deoxynucleotides and a damaged base, enable the direct, real‐time detection of NTH1 activity in vitro and in cellular lysates. The probe design was also applied in screening for potential NTH1 inhibitors, leading to the identification of a new small‐molecule inhibitor with sub‐micromolar potency.  相似文献   

10.
A new copper(II) complex, [Cu(naph‐leu)phen]CH3OH·0.5H2O, in which naph‐leu is the tridentate Schiff base ligand derived from the condensation of 2‐hydroxy‐1‐naphthaldehyde and L‐leucine, phen is phenanthroline, has been synthesized and characterized by elemental analyses, IR spectra and single crystal X‐ray diffraction. The DNA‐binding properties of this complex have been investigated by absorption spectra, fluorescence spectra and circular dichroism (CD) spectra, as well as viscosity measurement. Results show that this copper(II) complex binds to calf thymus DNA (CT‐DNA) in an intercalative mode and its intrinsic binding constant Kb is 4.87×103 L·mol?1. Furthermore, the DNA cleavage activity of this copper(II) complex has also been investigated by submarine gel electrophoresis. Interestingly, it was found that this complex can cleave the supercoiled plasmid pBR322 DNA to both nicked and linear forms.  相似文献   

11.
During DNA replication, ubiquitin-like, containing PHD and RING fingers domains 1 (UHRF1) plays key roles in the inheritance of methylation patterns to daughter strands by recognizing through its SET and RING-associated domain (SRA) the methylated CpGs and recruiting DNA methyltransferase 1 (DNMT1). Herein, our goal is to identify UHRF1 inhibitors targeting the 5′-methylcytosine (5mC) binding pocket of the SRA domain to prevent the recognition and flipping of 5mC and determine the molecular and cellular consequences of this inhibition. For this, we used a multidisciplinary strategy combining virtual screening and molecular modeling with biophysical assays in solution and cells. We identified an anthraquinone compound able to bind to the 5mC binding pocket and inhibit the base-flipping process in the low micromolar range. We also showed in cells that this hit impaired the UHRF1/DNMT1 interaction and decreased the overall methylation of DNA, highlighting the critical role of base flipping for DNMT1 recruitment and providing the first proof of concept of the druggability of the 5mC binding pocket. The selected anthraquinone appears thus as a key tool to investigate the role of UHRF1 in the inheritance of methylation patterns, as well as a starting point for hit-to-lead optimizations.  相似文献   

12.
Boc-protected benzimidazole-pyrrole, benzimidazole-imidazole, and benzimidazole-methoxypyrrole amino acids were synthesized and incorporated into DNA binding polyamides, comprised of N-methyl pyrrole and N-methyl imidazole amino acids, by means of solid-phase synthesis on an oxime resin. These hairpin polyamides were designed to determine the DNA recognition profile of a side-by-side benzimidazole/imidazole pair for the designated six base pair recognition sequence. Equilibrium association constants of the polyamide-DNA complexes were determined at two of the six base pair positions of the recognition sequence by quantitative DNase I footprinting titrations on DNA fragments each containing matched and single base pair mismatched binding sites. The results indicate that the benzimidazole-heterocycle building blocks can replace pyrrole-pyrrole, pyrrole-imidazole, and pyrrole-hydroxypyrrole constructs while retaining relative site specifities and subnanomolar match site affinities. The benzimidazole-containing hairpin polyamides represent a novel class of DNA binding ligands featuring tunable target recognition sequences combined with the favorable properties of the benzimidazole type DNA minor groove binders.  相似文献   

13.
Base flipping of the thymine dimer in duplex DNA   总被引:1,自引:0,他引:1  
Exposure of two adjacent thymines in DNA to UV light of 260-320 nm can result in the formation of the cis,syn-cyclobutane pyrimidine dimer (CPD). The structure of DNA containing an intrahelical CPD lesion has been previously studied experimentally and computationally. However, the structure of the extrahelical, flipped-out, CPD lesion, which has been shown to be the structure that binds to the CPD repair enzyme, DNA photolyase, has yet to be reported. In this work the structure of both the flipped-in and the flipped-out CPD lesions in duplex DNA is reported. These structures were calculated using 8 ns molecular dynamics (MD) simulations. These structures are then used to define the starting and ending points for the base-flipping process for the CPD lesion. Using a complex, two-dimensional pseudodihedral coordinate, the potential of mean force (PMF) for the base-flipping process was calculcated using novel methodology. The free energy of the flipped-out CPD is roughly 6.5 kcal/mol higher than that of the flipped-in state, indicating that the barrier to flipping out is much lower for CPD than for undamaged DNA. This may indicate that the flipped-out CPD lesion may be recognized by its repair enzyme, DNA photolyase, whereas previous studies of other damaged, as well as nondamaged, bases indicate that they are recognized by enzymes in the intrahelical, flipped-in state.  相似文献   

14.
Many cells have the ability to recognize and eliminate damage to their DNA, particularly thymine dimers formed by UV light. The elimination of this damage may be achieved by enzymatic, light-dependent cleavage of the dimers into the monomers (photoreactivation) or more frequently by dark repair, in which the damaged part is completely removed from the, DNA. In this repair process, the DNA is incised by an endonuclease in the immediate vicinity of the thymine dimers. Oligonucleotides containing the thymine dimer are removed hydrolytically from the DNA by the 5→3′ exonuclease activity of DNA polymerase I (Kornberg enzyme). The resulting gaps are immediately closed by a de novo synthesis with the aid of the same DNA polymerase I, the complementary strand serving as a template (excision repair). The final step is the formation of the phosphodiester bond between the newly synthesized DNA fragment and the old DNA strand by a DNA ligase. Xeroderma pigmentosum patients lack the endonuclease as a result of a genetic defect; they therefore cannot eliminate thymine dimers from their DNA, and are extremely sensitive to sunlight. All information so far suggests that genetic recombination and DNA repair are performed by the same enzyme system.  相似文献   

15.
Co(II), Ni(II), Cu(II), Zn(II), and VO(IV) complexes containing a versatile β-diketone Schiff-base ligand (obtained by the condensation of 3-furan-2-ylmethylene-2,4-dione and 2-aminophenol) have been synthesized and characterized. Microanalytical, magnetic, and spectroscopic data reveal that the central metal is coordinated to two oxygens of phenolate and two nitrogens of imine of the ligand. Binding of synthesized complexes with calf thymus DNA has been investigated by spectroscopic and electrochemical methods and viscosity measurements. The complexes are able to form adducts with DNA and to distort the double helix by changing the base stacking. Electrostatic binding of vanadyl complex is observed from the weak hypochromism in electronic absorption spectra and no change in the viscosity with DNA. Oxidative DNA cleavage activities of the complexes are studied with supercoiled pUC19 DNA using gel electrophoresis. The hydroxyl radical (OH?) is likely to be the species responsible for the cleavage of pUC19 DNA by the synthesized complexes. Under our experimental conditions, the vanadyl complex has no significant cleavage of DNA. The compounds have been screened for activity against several bacterial and fungal strains and the results are compared with the activity of standard drugs.  相似文献   

16.
We have shown that a key feature of drug binding, namely specific G-C base pair recognition at a 5'-TG step, can induce a number of novel structural features when an extrahelical base is inserted in close proximity to the drug binding site; we have clearly demonstrated the formation of a stabilised C-T mismatched base pair at a non-terminal site.  相似文献   

17.
Two new monobasic bidentate ligands and their Pd(II) complexes have been synthesized and characterized by analytical and spectroscopic methods. The structures of the complexes were confirmed by single-crystal X-ray diffraction. The bimolecular binding of the ligands and complexes has been carried out and described. Interestingly, both the bidentate chelating ligands replaced all the triphenyl arsine and chloride ions from the metal precursor in the formation of new complexes and were found to be approximately square planar. The interaction of the ligands and the complexes with calf thymus DNA and bovine serum albumin was studied by electronic and emission spectroscopy techniques, which suggested an intercalation mode of binding. It is well-known that the viscosity of a DNA solution increases if any compound added binds to it through intercalation because this process lengthens the DNA helix due to the increased separation of the DNA base pairs when the compound slides in between, whereas a partial, nonclassical intercalation could bend (or kink) the DNA helix, which leads to a reduction in length and thereby reducing its viscosity. By contrast, there will be no change in the viscosity when the compounds bind with DNA grooves or by partial intercalation, which was further confirmed by viscosity measurements and molecular docking studies. It has been found that the compounds cleaved supercoiled DNA into nicked DNA without any external agent. The in vitro cytotoxicity studies of the ligands and complexes against human lung (A549) and breast (MCF7) cancer cell lines showed significant activity for both species.  相似文献   

18.
The conformation of an unusual slipped loop DNA structure exhibited by the sequence d(GAATTCCCGAATTC)2 is determined using a combination of geometrical and molecular mechanics methods. This sequence is known to form a B-DNA-like duplex with the central non-complementary cytosines extruded into single stranded loop regions. The unusual feature is that the interior guanine does not pair with the cytosine across, instead, it pairs with the cytosine upstream by skipping two cytosines, leading to a slipped loop DNA structure with the loops staggered by two base pairs. The two loops, despite being very small, can fold across minor or major groove symmetrically or asymmetrically disposed, with one of the loop bases partially blocking the major or minor groove. Most interestingly, for certain conformations, the loop bases approach one another at close proximity so as to engage even in base pairing as well as base stacking interactions across the major groove. While such pairing and stacking are common in the tertiary folds of RNA, this is the first time that such an interaction is visualized in a DNA. This observation demonstrates that a W-C pair can readily be accomplished in a typical slipped loop structure postulated for DNA. Such tertiary loop interaction may prevent access to regulatory proteins across the major groove of the duplex DNA, thus providing a structure-function relation for the occurrence of slipped loop structure in DNA. Contribution no. 839 from this department  相似文献   

19.
Time-dependent Stokes shift (TDSS) responses in proteins and DNA exhibit a broad range of long time scales (>10 ps) that are not present in bulk aqueous solution. The physical interpretation of the long TDSS time scales in biomolecular systems is a matter of considerable debate because of the many different components present in the sample (water, biomolecule, counterions), which have highly correlated motions and intrinsically different abilities to adapt to local perturbations. Here we use molecular dynamics (MD) simulations to show that the surprisingly slow (~10 ns) TDSS response of coumarin 102 (C102), a base pair replacement, reflects a distinct dynamical signature for DNA damage. When the C102 molecule is covalently incorporated into DNA, an abasic site is created on the strand opposite the C102 probe. The abasic sugar exhibits a reversible interchange between intra- and extrahelical conformations that are kinetically stable on a nanosecond time scale. This conformational change, only possible in damaged DNA, was found to be responsible for the long time scales in the measured TDSS response. For the first time, a TDSS measurement has been attributed to a specific biomolecular motion. This finding directly contradicts the prevailing notion that the TDSS response in biomolecular contexts is dominated by hydration dynamics. It also suggests that TDSS experiments can be used to study ultrafast biomolecular dynamics that are inaccessible to other techniques.  相似文献   

20.
A series of small diamidines with thiophene and modified N-alkylbenzimidazole σ-hole module represent specific binding to single G⋅C base pair (bp) DNA sequence. The variation of N-alkyl or aromatic rings were sensitive to microstructures of the DNA minor groove. Thirteen new compounds were synthesized to test their binding affinity and selectivity. The dicyanobenzimidazoles needed to synthesize the target diamidines were made via condensation/cyclization reactions of different aldehydes with different 3-amino-4-(alkyl- or phenyl-amino) benzonitriles. The final diamidines were synthesized using lithium bis-trimethylsilylamide (LiN[Si(CH3)3]2) or Pinner methods. The newly synthesized compounds showed strong binding and selectivity to AAAGTTT compared to similar sequences AAATTT and AAAGCTTT investigated by several biophysical methods including biosensor-SPR, fluorescence spectroscopy, DNA thermal melting, ESI-MS spectrometry, circular dichroism, and molecular dynamics. The binding affinity results determined by fluorescence spectroscopy are in accordance with those obtained by biosensor-SPR. These small size single G⋅C bp highly specific binders extend the compound database for future biological applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号