首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Studies on the reaction kinetics and chromatographic properties of detergent-dispersed adenylate cyclase are described. Detergent-dispersed enzyme was prepared from whole rat cerebellum and from partially purified plasma membranes from rat liver. Data were simulated to fit kinetic models for which an inhibitor is added in constant proportion to the variable substrate. Models were chosen to distinguish whether the adenylate cyclase reaction may be controlled by an inhibitory action of free ATP--4 (or HATP--3) or by a stimulatory action of free divalent cations. The various kinetic models were then tested with the dispersed brain adenylate cyclase with both Mg++ and Mn++ and in two different buffer systems. The experimental data indicate that this enzyme has a distinct cation binding site, but exhibits no significant inhibition by HATP--3 or ATP--4. The detergent-dispersed adenylate cyclase both from liver plasma membranes and from brain have been chromatographed on anion exchange material and have been subjected to gel filtration. The presence of detergent was required for elution of cyclase activity from DEAE-Sephadex but was not required when DEAE-agarose was used. Dispersed brain cyclase was also chromatographed on agarose-NH(CH2)3NH(CH2)3-NH2 which exhibits both ionic and hydrophobic properties. Fifty percent of the applied activity was recovered with a fivefold increase in specific activity. The data suggest that the relative effectiveness of a given chromatographic procedure for detergent-dispersed adenylate cyclase may reflect the influence of both hydrophobic and ionic factors.  相似文献   

2.
The unicellular, green flagellate wild-type Euglena gracilis (strain Z) possesses two genes of the photoactivated adenylyl cyclase (PAC) family. The corresponding gene products were found to be responsible for step-up (but not step-down) photophobic responses as well as both positive and negative phototaxis. The proteins consist of two PACalpha (Mr 105 kDa) and two PACbeta (90 kDa) subunits. In an effort to produce sufficient amounts of PAC proteins, several routes of over-expression have been tried including homologous expression in Euglena and heterologous expression in Escherichia coli. All these approaches were hampered by low yield or formation of inclusion bodies. Therefore we decided to attempt a heterologous expression in an insect cell line. PACalpha and PACbeta were separately cloned in the transfer vector pBacPAK9 with a His tag attached. The transfer vector was subsequently cotransfected via baculovirus into the insect cells and amplified. For the expression both recombinant viruses (containing PACbeta and PACbeta, respectively) were cotransfected simultaneously into insect cells. The expressed proteins were analyzed in Western blots using PACalpha and PACbeta antibodies. Most of the proteins were found to be in soluble form in high yield. The recombinant PAC proteins were purified via their attached His tag on an anti-His resin. Adenylyl cyclase activity was quantified after blue-light excitation using a cAMP enzyme immunoassay kit.  相似文献   

3.
Here we present the functional characterization of a sesquiterpene cyclase from Kitasatospora setae. The enzyme converts the sesquiterpene precursor farnesyl diphosphate (FPP) into two previously unknown and unstable sesquiterpene ethers for which we propose the trivial names corvol ethers A and B. Both compounds were purified and their structures were determined by one‐ and two‐dimensional NMR spectroscopy. A biosynthetic mechanism for the FPP cyclization by the corvol ether synthase was proposed. The results from the incubation experiments of the corvol ether synthase with isotopically labeled precursors were in line with this mechanism, while alternative mechanisms could clearly be ruled out.  相似文献   

4.
In this study, mono- and pentacyclic C(35) terpenes from Bacillus subtilis were biosynthesized via the cyclization of C(35) isoprenoid using purified enzymes, including the first identified new terpene cyclase that shows no sequence homology to any of the known terpene cyclases. On the basis of these findings, we propose that these C(35) terpenes should be called the new family of "sesquarterpenes."  相似文献   

5.
质谱法分析蛇毒蛋白翻译后修饰   总被引:2,自引:1,他引:1  
采用SDS-PAGE分离大连黑眉蝮蛇(Gloydius Shedaoensis)蛇毒蛋白组分, Pro-Q Emerald 488糖蛋白和Pro-Q Diamond磷酸化蛋白荧光染料用于糖蛋白和磷酸化蛋白泳带染色, 采用高效液相色谱电喷雾电离串联质谱(HPLC-nESI-MS/MS)法鉴定蛋白. SDS-PAGE胶上的8条糖蛋白带被分别鉴定为L-氨基酸氧化酶、金属蛋白酶、谷氨酰环化酶、C-端缺失L-氨基酸氧化酶、纤溶酶原激活物、磷脂酶A2(PLA2)和神经生长因子; 5条磷酸化蛋白带被分别鉴定为Stejaggregin-A、PLA2、Crisp、金属蛋白酶 P-Ⅲ和Acutolysin e precursor, 与其它蛇毒来源蛋白具有一定的同源性. 为进一步验证方法的可靠性, 采用离子交换和凝胶过滤层析技术纯化得到了PLA2, Pro-Q Diamond染色结果显示PLA2被磷酸化. 研究所得结果为进一步研究蛋白质翻译后修饰对蛇毒蛋白的生物活性、结构与功能提供了依据.  相似文献   

6.
Vasopressin-sensitive pig kidney adenylate cyclase is sensitive to several effectors, such as Mg2+, other divalent cations, and guanyl nucleotides. The purpose of the present study was to compare the main characteristics of adenylate cyclase activation by vasopressin, Mg2+, and GMPPNP, respectively. Mg2+ ions were shown to exert at least three different effects on adenylate cyclase. The substrate of the adenylate cyclase reaction is the Mg-ATP complex. Mg2+ interacts with an enzyme regulatory site. Finally, Mg2+ can modulate the hormonal response, with Mg2+ ions affecting the coupling function--that is, the quantitative relationship between receptor occupancy and adenylate cyclase activation. At all the magnesium concentrations tested, from 0.25 mM to 16 mM, adenylate cyclase activation was not a direct function of receptor occupancy. At low Mg2+ concentrations, adenylate cyclase activation dose-response curve to the hormone tended to be superimposable to the hormone dose-binding curve. These results suggest a role of magnesium at the coupling step between the hormone-receptor complex and adenylate cyclase response. Cobalt, but not calcium, ions could exert the same effects as Mg2+ ions on this coupling step. GMPPNP induced considerable adenylate cyclase activation (15 to 35 times the basal value). Activation by GMPPNP was highly time and temperature dependent. At 30 degrees C, a 20 to 60 min preincubation period in the presence of GMPPNP was needed to obtain maximal activation. The higher the dose of GMPPNP in the medium, the longer it took to reach equilibrium. At 15 degrees C, activation was still increasing with time after 3 hr preincubation in the presence of the nucleotide. GMPPNP was active in a 10(-8)M to 10(-5)M concentration range. Unlike the results obtained with lysine vasopressin, the kinetic characteristics of dose-dependent adenylate cyclase activation curves by GMPPNP were unaffected by varying Mg2+ concentrations except for the increase in velocity when raising Mg2+ concentration. It was not clear whether or not the activation processes by the hormone and by GMPPNP had common mechanisms.  相似文献   

7.
A model for the regulation of the activity of Escherichia coli adenylate cyclase is presented. It is proposed that Enzyme I of the phosphoenolpyruvate:sugar phosphotransferase system (PTS) interacts in a regulatory sense with the catalytic unit of adenylate cyclase. The phosphoenolpyruvate (PEP)-dependent phosphorylation of Enzyme I is assumed to be associated with a high activity state of adenylate cyclase. The pyruvate or sugar-dependent dephosphorylation of Enzyme I is correlated with a low activity state of adenylate cyclase. Evidence in support of the proposed model involves the observation that Enzyme I mutants have low cAMP levels and that PEP increases cellular cAMP levels and, under certain conditions, activates adenylate cyclase, Kinetic studies indicate that various ligands have opposing effects on adenylate cyclase. While PEP activates the enzyme, either glucose or pyruvate inhibit it. The unique relationships of PEP and Enzyme I to adenylate cyclase activity are discussed.  相似文献   

8.
This study demonstrates that a tetraprenyl-β-curcumene cyclase, which was originally identified as a sesquarterpene cyclase that converts a head-to-tail type of monocycle to a pentacycle, also cyclizes a tail-to-tail type of linear squalene into a bicyclic triterpenol, 8α-hydroxypolypoda-13,17,21-triene. The 8α-hydroxypolypoda-13,17,21-triene was found to be a natural triterpene from B. megaterium. It was also demonstrated that cyclizations of both tetraprenyl-β-curcumene and squalene occurred with a purified B. megaterium TC homologue in the same reaction mixture. These results suggest that the tetraprenyl-β-curcumene cyclase is bifunctional, cyclizing both tetraprenyl-β-curcumene and squalene in vivo. This is the first report describing a bifunctional terpene cyclase, which biosynthesizes two classes of cyclic terpenes with different numbers of carbons as natural products in the organism.  相似文献   

9.
(3'-5')-Cyclic diguanylate (c-di-GMP) is a bacterial second messenger with immunomodulatory activities in mice suggesting potential applications as a vaccine adjuvant and as a therapeutic agent. Clinical studies in larger animals or humans will require larger doses that are difficult and expensive to generate by currently available chemical or enzymatic synthesis and purification methods. Here we report the production of c-di-GMP at the multi-gram scale from the economical precursors guanosine monophosphate (GMP) and adenosine triphosphate by a "one-pot" three enzyme cascade consisting of GMP kinase, nucleoside diphosphate kinase, and a mutated form of diguanylate cyclase engineered to lack product inhibition. The c-di-GMP was purified to apparent homogeneity by a combination of anion exchange chromatography and solvent precipitation and was characterized by reversed phase high performance liquid chormatography and mass spectrometry, nuclear magnetic resonance spectroscopy, and further compositional analyses. The immunomodulatory activity of the c-di-GMP preparation was confirmed by its potentiating effect on the lipopolysaccharide-induced interleukin 1β, tumor necrosis factor α, and interleukin 6 messenger RNA expression in J774A.1 mouse macrophages.  相似文献   

10.
Isolation,PurificationandSpectralCharacteristicsofSolubleGuanylateCyclasefromBovineLungLIZheng-qiang1**,LIXiao-yuan1,SHEUFwu-...  相似文献   

11.
In view of the ongoing debate on plant cyclic nucleotide metabolism, especially the functional presence of adenylyl cyclase, a novel detection method has been worked out to quantify the reaction product. Using uniformly labelled (15)N-ATP as a substrate for adenylyl cyclase, a qualitative and quantitative liquid chromatography/electrospray ionisation tandem mass spectrometry (LC/ESI-MS/MS) method was developed to measure de novo formed (15)N-adenosine 3',5'-cyclic monophosphate. Adenylyl cyclase activity was observed in chloroplasts obtained from Nicotiana tabacum cv. Petit Havana and the kinetic parameters and influence of various metabolic effectors are discussed in their context.  相似文献   

12.
Cyclic nucleotide, such as cyclic GMP, is a secondary messenger that regulates a wide range of biological process via the diverse signaling cascades. Photoactivated adenylyl cyclases (PACs), constituted of blue light utilizing flavin (BLUF) and cyclase homology domain (CHD), are used as an optogenetic tool to modulate the cyclic AMP (cAMP) level and to study cAMP-mediated signal transduction mechanisms. Here, we have engineered photoactivated adenylyl cyclases (PACs) from microbes to photoactivated guanylyl cyclases (PGCs) via mutagenesis of the substrate binding-specific residues in cyclase homology domain. We demonstrate purification, photodynamic, and detailed biochemical characterization of the engineered PGCs that can serve as optogenetic tool for manipulation of cGMP level in the cells. Engineered PGCs show typical BLUF photoreceptor properties with different recovery kinetics and varying light-regulated guanylyl cyclase activities.  相似文献   

13.
The present study was undertaken to localize adenylate cyclase activity in salivary glands by cytochemical means. For the study, serous parotid glands and mixed sublingual glands of the rat were used. Pieces of the fixed glands were incubated with adenosine triphosphate (ATP) or adenylyl-imidodiphosphate (AMP-PNP) as substrate: inorganic pyrophosphate or PNP liberated upon the action of adenylate cyclase on the substrates is precipitated by lead ions at their sites of production. In both glands, the reaction product was detected along the myoepithelial cell membranes in contact with secretory cells, indicating that a high level of adenylate cyclase activity occurs in association with these cell membranes. The association with a high level of the enzyme activity might be related to the contractile nature of myoepithelial cells which are supposed to aid secretory cells in discharging secretion products. A high level of adenylate cyclase activity was also detected associated with serous secretory cells (acinar cells of the parotid gland and demilune cells of the sublingual gland), but not with mucous secretory cells. In serous cells, deposits of reaction product were localized along the extracellular space of the apical cell membrane bordering the lumen. This is the portion of the cell membrane which fuses with the granule membranes during secretion. Since the granule membranes are not associated with a detectable level of adenylate cyclase activity, it appears that the enzyme activity becomes activated or associated with the granule membranes as they become part of the cell membrane by fusion. The association with a high level of adenylate cyclase activity appears to be related to the ability of the membrane to fuse with other membranes. It is likely, since the luminal membrane of mucous cells which does not fuse with mucous granule membranes during secretion is not associated with a detectable enzyme activity.  相似文献   

14.
分别以1,3,5-三苯甲酰基-α-D-核糖、3,5-二苯甲酰基-2-脱氧-2,2-二氟戊呋喃糖-1-酮和D-木糖为原料, 经由烟酰胺核苷及烟酰胺核苷酸中间体, 合成了系列糖环经氟原子取代的烟酰胺腺嘌呤二核苷酸(NAD)类CD38抑制剂. 基于对CD38的水解抑制能力的考察, 评价了所合成氟代NAD类似物的活性. 结果表明, 糖环上氟原子取代的数目和位置对抑制剂活性的影响十分明显, 烟酰胺核苷的端基构型对活性的影响较大. 2个化合物均显示出非常好的CD38抑制活性, 其中化合物2a的抑制活性高出阳性对照物阿糖型氟代烟酰胺腺嘌呤二核苷酸2个数量级.  相似文献   

15.
Choleragen exerts its effect on cells through activation of adenylate cyclase. Choleragen initially interacts with cells through binding of the B subunit of the toxin to the ganglioside GM1 on the cell surface. Subsequent events are less clear. Patching or capping of toxin on the cell surface may be an obligatory step in choleragen action. Studies in cell-free systems have demonstrated that activation of adenylate cyclase by choleragen requires NAD. In addition to NAD, requirements have been observed for ATP, GTP, and calcium-dependent regulatory protein. GTP also is required for the expression of choleragen-activated adenylate cyclase. In preparations from turkey erythrocytes, choleragen appears to inhibit an isoproterenol-stimulated GTPase. It has been postulated that by decreasing the activity of a specific GTPase, choleragen would stabilize a GTP-adenylate cyclase complex and maintain the cyclase in an activated state. Although the holotoxin is most effective in intact cells, with the A subunit having 1/20th of its activity and the B subunit (choleragenoid) being inactive, in cell-free systems the A subunit, specifically the A1 fragment, is required for adenylate cyclase activation. The B protomer is inactive. Choleragen, the A subunit, or A1 fragment under suitable conditions hydrolyzes NAD to ADP-ribose and nicotinamide (NAD glycohydrolase activity) and catalyzes the transfer of the ADP-ribose moiety of NAD to the guandino group of arginine (ADP-ribosyltransferase activity). The NAD glycohydrolase activity is similar to that exhibited by other NAD-dependent bacterial toxins (diphtheria toxin, Pseudomonas exotoxin A), which act by catalyzing the ADP-ribosylation of a specific acceptor protein. If the ADP-ribosylation of arginine is a model for the reaction catalyzed by choleragen in vivo, then arginine is presumably an analog of the amino acid which is ADP-ribosylated in the acceptor protein. It is postulated that choleragen exerts its effects on cells through the NAD-dependent ADP-ribosylation of an arginine or similar amino acid in either the cyclase itself or a regulatory protein of the cyclase system.  相似文献   

16.
A terpene cyclase from Streptomyces pristinaespiralis was characterized as the synthase for (+)‐(2S,3S,9R)‐pristinol. The structure of this sesquiterpene alcohol, which has a new carbon skeleton, was established by NMR spectroscopy and single‐wavelength anomalous‐dispersion X‐ray crystallography. Extensive isotopic labelling experiments were performed to distinguish between various possible cyclization mechanisms of the terpene cyclase and to decipher the EI‐MS fragmentation mechanism for pristinol.  相似文献   

17.
Adenosine diphosphate-ribosyl cyclase (ADP-ribosyl cyclase) is a ubiquitous enzyme in eukaryotes that converts NAD+ to cyclic-ADP-ribose (cADPR) and nicotinamide. A quantitative assay for cADPR was developed using capillary electrophoresis to separate NAD+, cADPR, ADP-ribose, and ADP with UV detection (254 nm). Using this assay, the apparent Km and Vmax for Aplysia ADP-ribosyl cyclase were determined to be 1.24+/-0.05 mM and 131.8+/-2.0 microM/min, respectively. Boric acid inhibited ADP-ribosyl cyclase non-competitively with a Ki of 40.5+/-0.5 mM. Boric acid binding to cADPR, determined by electrospray ionization mass spectrometry, was characterized by an apparent binding constant, KA, of 655+/-99 L/mol at pH 10.3.  相似文献   

18.
The second messenger cAMP has been implicated in numerous cellular processes such as glycogen metabolism, muscle contraction, learning and memory, and differentiation and development. Genetic evidence suggests that the enzyme that produces cAMP, adenylyl cyclase (AC), may be involved in pathogenesis in many of these cellular processes. In addition, these data suggest that membrane-bound ACs may be valuable targets for therapeutics to treat pathogenesis of these processes. The development of a robust real-time adenylyl cyclase assay that can be scalable to high-throughput screening could help in the development of novel therapeutics. Here we report a novel fluorescence-based cyclase assay using Bodipy FL GTPgammaS (BGTPgammaS). The fluorescence of the Bodipy moiety of BGTPgammaS was dramatically enhanced by incubation with the minimal catalytic core of wild-type-AC (wt-AC) and a mutant with decreased purine selectivity (mut-AC), in an AC activation-dependent manner. No increase in fluorescence was observed using Bodipy FL ATPgammaS (BATPgammaS) as substrate for either wt-AC or mut-AC. Using BGTPgammaS, forskolin, Gsalpha.GTPgammaS and the divalent cation Mn(2+) potently enhanced the rate of fluorescence increase in a concentration-dependent manner. The fluorescence enhancement of the Bodipy moiety was inhibited by known inhibitors of AC such as 2'deoxy,3'AMP and 2',5'-dideoxy-3'ATP. Furthermore, the fluorescence assay is adaptable to 96-well and 384-well multiplate format and is thus applicable to high throughput screening methodologies.  相似文献   

19.
The activation of adenylate cyclase in lysed pigeon erythrocytes requires, among several cofactors, a nucleotide which may be ATP, GTP, or many other triphosphates. However, after removal of endogenous nucleotides by gel filtration or by adsorption onto charcoal the requirement can be met only by GTP, or an analog of GTP. The GTP is required during the activation of the cyclase by toxin even if GTP is also included during the subsequent adenylate cyclase assay, conducted without toxin. In the presence of GTP it is possible to assay for the cytosolic protein that is also required for the action of cholera toxin. By gel filtration, its apparent molecular weight is 15,000--20,000.  相似文献   

20.
We have designed more potent inhibitors from the previously reported LF 05-0038, a 6-isoquinolinol based inhibitor of 2,3-oxidosqualene cyclase (IC50: 1.1 microM). Replacement of the 3-OH group by various 3-substituted amino groups, and modification of the alkyl chain borne by the endocyclic nitrogen led to inhibitors with IC50 in the range of 0.15 to 1 microM. In a second step, opening of the bicyclic ring system afforded the corresponding aminoalkylpiperidines which were slightly more potent. Finally, introduction of suitable aromatic containing moieties on the piperidine nitrogen yielded very potent inhibitors such as 20x (IC50 = 18 nM) easy to synthesize and achiral. The recent availability of the crystal structure of squalene-hopene cyclase allowed us to construct a three-dimensional (3D) model of the related 2,3-oxidosqualene cyclase (OSC) which was tentatively used to describe the possible mode of binding of our compounds and which can be useful for designing new inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号