首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

The effect of anion concentration on the apparent rate constant of polymerization kA p of isobutylene (IB) induced by the 2-chloro-2,4,4-trimethylpentane (TMPCl)/TiCl4 initiating system using the CH2Cl2/nC6H14 (60/40 v/v) solvent system at ?40 and ?80°C was studied by the use of nBu4NCl. Computer simulation has shown that kA p decreases several orders of magnitude upon the addition of even a very small amount of common anion TiCl?- 5 to the charge. The rate of change is reduced in the concentration range of experimental interest. It was concluded that the decrease of kA p with increasing TiCl ?- 5 concentration is mainly due to the decreasing contribution of propagation by free ions. The contribution (%) of propagation by free ions to the apparent rate of propagation was calculated.  相似文献   

2.
Complex formation in a K2PdCl4-HEDP system (HEDP is 1-hydroxyethylidene-1,1-diphosphonic acid) at the metal-to-ligand ratios 1 : 1 and 1 : 2 is studied by 31P and 1H NMR spectroscopy. The formation of equimolar complexes, in which HEDP is coordinated to palladium(II) in a bidentate mode through two oxygen atoms of the phosphonic groups, is found in these systems. The structure and charge characteristics of conformers of the complexes are simulated by the quantum-chemical methods.  相似文献   

3.
One of the major limiting factors for efficient photoelectrochemical water oxidation is the fast recombination kinetics of photogenerated charge carriers. Herein, we propose a model system that utilizes ZnIn2S4 and hierarchical VS2 microflowers for efficient charge separation through a Z‐scheme pathway, without the need for an electron mediator. An impressive 18‐fold increase in photocurrent was observed for ZnIn2S4–VS2 compared to ZnIn2S4 alone. The charge‐transfer dynamics in the composite were found to follow a Z‐scheme pathway, which resulted in decreased charge recombination and greater accumulation of the surface charge. Furthermore, slow kinetics of the surface reaction in the ZnIn2S4–VS2 composite correlated to an increased surface‐charge capacitance. This feature of the composite material facilitated partial storage of the photogenerated charge carriers (e?/h+) under illumination and dark‐current conditions, thus storing and utilizing solar energy more efficiently.  相似文献   

4.
The efficient electron injection by direct dye‐to‐TiO2 charge transfer and strong adhesion of mussel‐inspired synthetic polydopamine (PDA) dyes with TiO2 electrode is demonstrated. Spontaneous self‐polymerization of dopamine using dip‐coating (DC) and cyclic voltammetry (CV) in basic buffer solution were applied to TiO2 layers under a nitrogen atmosphere, which offers a facile and reliable synthetic pathway to make the PDA dyes, PDA‐DC and PDA‐CV, with conformal surface and perform an efficient dye‐to‐TiO2 charge transfer. Both synthetic methods led to excellent photovoltaic results and the PDA‐DC dye exhibited larger current density and efficiency values than those in the PDA‐CV dye. Under simulated AM 1.5 G solar light (100 mW cm?2), a PDA‐DC dye exhibited a short circuit current density of 5.50 mW cm?2, corresponding to an overall power conversion efficiency of 1.2 %, which is almost 10 times that of the dopamine dye‐sensitized solar cell. The PDA dyes showed strong adhesion with the nanocrystalline TiO2 electrodes and the interface engineering of a dye‐adsorbed TiO2 surface through the control of the coating methods, reaction times and solution concentration maximized the overall conversion efficiency, resulting in a remarkably high efficiency.  相似文献   

5.
The change of kinetic characteristics of photoelectrochemical hydrogen evolution at p-type silicon in acid aqueous electrolyte solutions under prolonged continuous illumination is studied. It is shown that, during the transfer of full charge Q t < 150 C/cm2 through the silicon/electrolyte interface, the interrelation between the reciprocal time of the charge transfer into electrolyte and the steady-state current remains linear. In this case, a Tafel-like relation links the interfacial charge to the steady-state electrode current. Passing current through the electrode even further results, at Q t > 350 C/cm2, in breaking-down the direct relation between the current and the charge transfer time, despite the electrode's retaining high photosensitivity. The effect is probably caused by significant energy and structure distortions in the surface layer of silicon.  相似文献   

6.
Speciation and solubility of neptunium were studied using paper electrophoresis, ion exchange and ultrafiltration. Among these methods, the paper electrophoresis was found to be suitable for measuring speciation and solubility of neptunium of low concentration, if chemical species had opposite charge each other or dissolved species had a charge. Using paper electrophoresis, hydrolysis constants of NpO2OH0 and NpO 2 (OH) 2 and solubility product of NpO2 were obtained and ionic-strength dependence of speciation was observed.  相似文献   

7.
A highly efficient Z‐scheme photocatalytic system constructed with 1D CdS and 2D CoS2 exhibited high photocatalytic hydrogen‐evolution activity of 5.54 mmol h?1 g?1 with an apparent quantum efficiency of 10.2 % at 420 nm. More importantly, its interfacial charge migration pathway was unraveled: The electrons are efficiently transferred from CdS to CoS2 through a transition atomic layer connected by Co–S5.8 coordination, thus resulting in more photogenerated carriers participating in surface reactions. Furthermore, the charge‐trapping and charge‐transfer processes were investigated by transient absorption spectroscopy, which gave an estimated charge‐separation yield of approximately 91.5 % and a charge‐separated‐state lifetime of approximately (5.2±0.5) ns in CdS/CoS2. This study elucidates the key role of interfacial atomic layers in heterojunctions and will facilitate the development of more efficient Z‐scheme photocatalytic systems.  相似文献   

8.
The active molybdenum sulfide compound Mo2S3, which should be considered as a cathode material for thin-layer rechargeable power source, has been produced by electrolysis. Using impedance spectroscopy and potential relaxation method after current interruption, the kinetic parameters of lithium intercalation in electrolytic Mo2S3 have been obtained. Activation energy of Li+ migration in electrolyte (13.76 kJ/mol), charge transfer through the Mo2S3 electrode/electrolyte interface (38.8 kJ/mol), and Li+ diffusion in a solid phase (57.3 kJ/mol) have also been established. Taking into account the coefficient data of charge mass transfer in a solid phase and the reaction rate coefficient of charge transfer through the interface electrode/electrolyte within the temperature range 20–50 °C, the stage of Li+ transfer in a solid phase has been determined as a limiting stage for lithium intercalation in electrolytic molybdenum sulfide Mo2S3.  相似文献   

9.
A mesoporous flake‐like manganese‐cobalt composite oxide (MnCo2O4) is synthesized successfully through the hydrothermal method. The crystalline phase and morphology of the materials are characterized by X‐ray diffraction, field‐emission scanning electron microscopy, transmission electron microscopy, and Brunauer–Emmett–Teller methods. The flake‐like MnCo2O4 is evaluated as the anode material for lithium‐ion batteries. Owing to its mesoporous nature, it exhibits a high reversible capacity of 1066 mA h g?1, good rate capability, and superior cycling stability. As an electrode material for supercapacitors, the flake‐like MnCo2O4 also demonstrates a high supercapacitance of 1487 F g?1 at a current density of 1 A g?1, and an exceptional cycling performance over 2000 charge/discharge cycles.  相似文献   

10.
Cobalt pyrophosphate (Co2P2O7) nano/microstructures (oblong plate, microplate, microflower, and hierarchical architectures) have been successfully synthesized through calcination of NH4CoPO4·H2O nano/microstructures. More importantly, supercapacitive performances of Co2P2O7 nano/microstructures were studied using cyclic voltammetry, galvanostatic charge/discharge measurements, and electrochemical impedance spectroscopy methods in 3.0 M KOH solution. These results show that Co2P2O7 hierarchical architecture electrodes exhibit high specific capacitance of 367 F?g?1 at current density of 0.625 A?g?1 in aqueous KOH solution. Co2P2O7 hierarchical architecture electrodes remain 96.2 % of the initial specific capacitance after 3,000 charge/discharge cycles.  相似文献   

11.
DNA-stabilized silver nanoclusters (DNA-AgNCs) are easily tunable emitters with intriguing photophysical properties. Here, a DNA-AgNC with dual emission in the red and near-infrared (NIR) regions is presented. Mass spectrometry data showed that two DNA strands stabilize 18 silver atoms with a nanocluster charge of 12+. Besides determining the composition and charge of DNA2[Ag18]12+, steady-state and time-resolved methods were applied to characterize the picosecond red fluorescence and the relatively intense microsecond-lived NIR luminescence. During this process, the luminescence-to-fluorescence ratio was found to be excitation-intensity-dependent. This peculiar feature is very rare for molecular emitters and allows the use of DNA2[Ag18]12+ as a nanoscale excitation intensity probe. For this purpose, calibration curves were constructed using three different approaches based either on steady-state or time-resolved emission measurements. The results showed that processes like thermally activated delayed fluorescence (TADF) or photon upconversion through triplet-triplet annihilation (TTA) could be excluded for DNA2[Ag18]12+. We, therefore, speculate that the ratiometric excitation intensity response could be the result of optically activated delayed fluorescence.  相似文献   

12.
Electrically conducting poly(3,4‐ethylenedioxythiophene) (PEDOT) film doped with silicomolybdate (SiMo12O404? or SiMo12) was synthesized by electrochemical polymerization. The synthesized film is capable of fast charge propagation during redox reactions in strong acid medium 0.2 M H2SO4 solution. The modified electrode was used towards reduction of bromate and successfully employed as an amperometric sensor for bromate and also above modified electrode was investigated for ascorbic acid oxidation.  相似文献   

13.
采用密度泛函理论(DFT)B3LYP方法,6-311G(d,p)(C,H,O)/LANL2DZ(Ag)基组,计算了黄曲霉素B2(AFB2)分子吸附在Ag2团簇的表面增强拉曼散射(SERS)光谱和预共振拉曼光谱,并与实验结果比较. 结果显示:AFB2分子在基态Ag2团簇表面吸附时,增强因子最大达到102,对应吡喃(pyrane)环C=O伸缩振动,主要是由AFB2分子周围化学环境改变而引起的基态静极化率改变导致的化学增强. 不同激发波长下的AFB2分子预共振拉曼光谱的增强强度不同:电荷转移态激发波长为1144 和544 nm时拉曼信号增强了102倍,而选择电荷转移预共振波长432和410 nm作为入射光时,其拉曼信号增强了104倍,增强机理为银团簇和黄曲霉素分子之间的电荷转移共振增强. 因此通过改变入射光波长,选择电荷转移共振激发波长,更有利于强致癌物AFB2分子的痕量检测.  相似文献   

14.
温和条件下CO2为原料电合成碳酸二甲酯   总被引:1,自引:0,他引:1  
常温常压下, 研究了以CO2和甲醇为原料电合成碳酸二甲酯的反应. 在四乙基溴化铵为支持电解质的乙腈溶液中, 通过恒电流电解得到了唯一的产物碳酸二甲酯. 为了优化电解条件, 分别考察了工作电极、电流密度、支持电解质、通电量以及电解前后加入甲醇顺序的不同等因素对该反应的影响. 以铜为工作电极, 石墨为对电极, 在17 mA•cm-2的电流密度下恒电流电解, 当通过2 F•mol-1的电量后, 碳酸二甲酯的产率可达74%, 大大高于文献报道值.  相似文献   

15.
Effective core potential (ECP) and full-electron (FE) calculations for MoS4?2, MoO4?2, and MoOCl4 compounds were analyzed. Geometry parameters, binding energies, charge distributions, and topological properties of the electronic density were studied for Mo? L bonds (L = S, O, Cl). Results clearly indicate that those approaches that include valence plus 4s and 4p electrons (ECP2 methods) are able to reproduce the topological properties of Mo? L bonds, charge distributions, and geometries with respect to those obtained by FE methods. ECP methods that consider only the 4d and 5s valence electrons (ECP1) fail in the calculation of molecular properties. The use of 5p functions in ECP1 approaches produces a negative Mulliken charge on Mo. Bader's charges give more consistent results than Mulliken's ones. A new parameter for measuring the degree of ionicity is proposed. © 1994 by John Wiley & Sons, Inc.  相似文献   

16.
We have measured the relative total charge transfer cross sections of H2+ + H2 as a function of the vibrational state of H2+, υ′o = 0–4. using the crossed ion-neutral beam and high-resolution photoionization methods. The experimental results obtained at a center-of-mass collisional energy of 22.5 eV are found to be in excellent agreement with a recent theoretical study.  相似文献   

17.
Nanocrystalline tin‐oxide particles were prepared as electrodes on the bases of ITO glass and AT‐cut quartz crystals (sputtered gold), respectively, and characterized for their electrochemical behavior. Experiments suggested that the SnO2 particles could induce an energy barrier to the redox reactions taking place on the electrode surface. When the amount of SnO2 exceeded ca. 10?7 mol cm?2, electrochemical activity demonstrated by the solution redox couples was entirely suppressed. Nevertheless, electrochemical impedance spectroscopic (EIS) measurements suggested that mutual communication between redox couples would still take place on the surface of SnO2. For instance, although the CV curves of Fe(CN)63‐/4‐ were completely blocked, the exchange current of Fe(CN)63‐/4‐ could still flow through the tin‐oxide modified electrode, increasing with its concentration up to 40 mM. The propagation of electrons in the SnO2 film was likely via a hopping mechanism. Electrochemical quartz microbalance (EQCM) measurements, in addition, suggested that a charge‐compensating cation (K+ or H+) uptake reaction may be induced as electrons were pumped to the Sn02 electrode, while, if electrons were removed, that could cause water desorption. Analysis based on the Frumkin adsorption isotherm showed the driving force behind the adsorption of water on SnO2 is about ?2 kcal/mol. Nonetheless, the adsorbed water might face a competitive repulsion from acetonitrile when acetonitrile was used as the electrolyte medium.  相似文献   

18.
Copper(I) complexes (CICs) are of great interest due to their applications as redox mediators and molecular switches. CICs present drastic geometrical change in their excited states, which interferes with their luminescence properties. The photophysical process has been extensively studied by several time-resolved methods to gain an understanding of the dynamics and mechanism of the torsion, which has been explained in terms of a Jahn–Teller effect. Here, we propose an alternative explanation for the photoinduced structural change of CICs, based on electron density redistribution. After photoexcitation of a CIC (S0→S1), a metal-to-ligand charge transfer stabilizes the ligand and destabilizes the metal. A subsequent electron transfer, through an intersystem crossing process, followed by an internal conversion (S1→T2→T1), intensifies the energetic differences between the metal and ligand within the complex. The energy profile of each state is the result of the balance between metal and ligand energy changes. The loss of electrons originates an increase in the attractive potential energy within the copper basin, which is not compensated by the associated reduction of the repulsive atomic potential. To counterbalance the atomic destabilization, the valence shell of the copper center is polarized (defined by ∇2ρ(r) and ∇2Vne(r)) during the deactivation path. This polarization increases the magnitude of the intra-atomic nuclear–electron interactions within the copper atom and provokes the flattening of the structure to obtain the geometry with the maximum interaction between the charge depletions of the metal and the charge concentrations of the ligand.  相似文献   

19.
Emission spectra between 185 and 600 nm have been investigated following near-thermal charge exchange between He+ and N2O and ≤ 100 eV electron impact on N2O. The charge exchange produces N2O+Ã→X?and N2+ B → X emission, but the two band systems account for at most 5% of all charge transfer products. These results and literature data on Ar+/N2O are discussed in the light of Franck—Condon and energy resonance criteria as applied to low-energy charge exchange. The electron-impact experiments revealed a weak (≈ 10?3) long-lived (≈ 50 × 10?6 s) component in the N2O+Ã→X?emission.  相似文献   

20.
通过共沉淀法制备锂离子电池富锂锰基正极材料Li1.2Mn0.534Ni0.133Co0.133O2,并对其进行AlF3包覆。实验结果表明,通过AlF3包覆,材料的电化学性能得到明显提高。在0.2C下,包覆前材料的首次放电比容量为253 mAh.g-1,首次充放电效率仅为88.8%。经过AlF3包覆,材料的首次放电比容量提高到294 mAh.g-1,首次充放电效率高达96.4%。同样,在1.0C下循环50次,未包覆材料的放电比容量由225 mAh.g-1降到185 mAh.g-1,容量保持率仅为82.2%。经过AlF3包覆,材料的放电比容量由230mAh.g-1仅降为222 mAh.g-1,容量保持率高达96.5%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号