首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We show that the number of elements in FM(1+1+n), the modular lattice freely generated by two single elements and an n-element chain, is 1 $$\frac{1}{{6\sqrt 2 }}\sum\limits_{k = 0}^{n + 1} {\left[ {2\left( {\begin{array}{*{20}c} {2k} \\ k \\ \end{array} } \right) - \left( {\begin{array}{*{20}c} {2k} \\ {k - 2} \\ \end{array} } \right)} \right]} \left( {\lambda _1^{n - k + 2} - \lambda _2^{n - k + 2} } \right) - 2$$ , where \(\lambda _{1,2} = {{\left( {4 \pm 3\sqrt 2 } \right)} \mathord{\left/ {\vphantom {{\left( {4 \pm 3\sqrt 2 } \right)} 2}} \right. \kern-0em} 2}\) .  相似文献   

2.
Functionsp(x) andq(x) for which the Dirac operator $$Dy = \left( {\begin{array}{*{20}c} {\begin{array}{*{20}c} 0 \\ { - 1} \\ \end{array} } & {\begin{array}{*{20}c} 1 \\ 0 \\ \end{array} } \\ \end{array} } \right)\frac{{dy}}{{dx}} + \left( {\begin{array}{*{20}c} {p(x) q(x)} \\ {q(x) - p(x)} \\ \end{array} } \right)y = \lambda y, y = \left( {\begin{array}{*{20}c} {y_1 } \\ {y_2 } \\ \end{array} } \right), y_1 (0) = 0,$$ has a countable number of eigenvalues in the continuous spectrum are constructed.  相似文献   

3.
This paper is a continuation of [3]. Suppose f∈Hp(T), 0σ r σ f,σ=1/p?1. When p=1, it is just the partial Fourier sums Skf. In this paper we establish the sharp estimations on the degree of approximation: $$\left\{ { - \frac{1}{{logR}}\int\limits_1^R {\left\| {\sigma _r^\delta f - f} \right\|_{H^p (T)}^p \frac{{dr}}{r}} } \right\}^{1/p} \leqq C{\mathbf{ }}{}_p\omega \left( {f,{\mathbf{ }}( - \frac{1}{{logR}})^{1/p} } \right)_{H^p (T)} ,0< p< 1,$$ and \(\frac{1}{{\log L}}\sum\limits_{k - 1}^L {\frac{{\left\| {S_k f - f} \right\|_H 1_{(T)} }}{k} \leqq Cp\omega (f; - \frac{1}{{\log L}})_H 1_{(T)} } \) Where $$\omega (f,{\mathbf{ }}h)_{H^p (T)} \begin{array}{*{20}c} { = Sup} \\ {0 \leqq \left| u \right| \leqq h} \\ \end{array} \left\| {f( \cdot + u) - f( \cdot )} \right\|_{H^p (T).} $$ .  相似文献   

4.
We consider the question of evaluating the normalizing multiplier $$\gamma _{n,k} = \frac{1}{\pi }\int_{ - \pi }^\pi {\left( {\frac{{sin\tfrac{{nt}}{2}}}{{sin\tfrac{t}{2}}}} \right)^{2k} dt} $$ for the generalized Jackson kernel J n,k (t). We obtain the explicit formula $$\gamma _{n,k} = 2\sum\limits_{p = 0}^{\left[ {k - \tfrac{k}{n}} \right]} {( - 1)\left( {\begin{array}{*{20}c} {2k} \\ p \\ \end{array} } \right)\left( {\begin{array}{*{20}c} {k(n + 1) - np - 1} \\ {k(n - 1) - np} \\ \end{array} } \right)} $$ and the representation $$\gamma _{n,k} = \sqrt {\frac{{24}}{\pi }} \cdot \frac{{(n - 1)^{2k - 1} }}{{\sqrt {2k - 1} }}\left[ {1\frac{1}{8} \cdot \frac{1}{{2k - 1}} + \omega (n,k)} \right],$$ , where $$\left| {\omega (n,k)} \right| < \frac{4}{{(2k - 1)\sqrt {ln(2k - 1)} }} + \sqrt {12\pi } \cdot \frac{{k^{\tfrac{3}{2}} }}{{n - 1}}\left( {1 + \frac{1}{{n - 1}}} \right)^{2k - 2} .$$ .  相似文献   

5.
LetQ(x) denote a quadratic form over the rational integers in four variables (x=(x1,...,x4)). ThenQ is representable as a symmetric matrix. Assume this matrix to be non-singular modp(p≠2 prime); then the “inverse” quadratic formQ ?1 modp can be defined. Letf:?4→? be defined such that the Fourier transformf exists and the sum $$\sum\limits_{x \in \mathbb{Z}^4 } {f(c x), c \in \mathbb{R}, c \ne 0} $$ is convergent. Furthermore, letm=p 1...p k be the product ofk distinct primes withm>1, 2×m; let $$\varepsilon = \prod\limits_{i = 1}^k {\left( {\frac{{\det Q}}{{p_i }}} \right)} \ne 0$$ for the Legendre symbol $$\left( {\frac{ \cdot }{p}} \right)$$ ; define $$B_i (Q,x) = \left\{ {\begin{array}{*{20}c} {1 for Q(x) \equiv 0\bmod p_i } \\ , \\ {0 for Q(x)\not \equiv 0\bmod p_i } \\ \end{array} } \right.$$ and forr∈?,r>0, $$F(Q,f,r) = \sum\limits_{x \in \mathbb{Z}^4 } {\left( {\prod\limits_{i = 1}^k {\left( {B_i (Q,x) - \frac{1}{{p_i }}} \right)} } \right)f(r^{ - {1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} x)} $$ Then we have $$F(Q,f,m) = \varepsilon F(Q^{ - 1} ,\hat f,m)$$   相似文献   

6.
7.
We consider an eigenvalue problem for a system on [0, 1]: $$\left\{ {\begin{array}{*{20}l} {\left[ {\left( {\begin{array}{*{20}c} 0 & 1 \\ 1 & 0 \\ \end{array} } \right)\frac{{\text{d}}} {{{\text{d}}x}} + \left( {\begin{array}{*{20}c} {p_{11} (x)} & {p_{12} (x)} \\ {p_{21} (x)} & {p_{22} (x)} \\ \end{array} } \right)} \right]\left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(2)} (x)} \\ \end{array} } \right) = \lambda \left( {\begin{array}{*{20}c} {\varphi ^{(1)} (x)} \\ {\varphi ^{(1)} (x)} \\ \end{array} } \right)} \\ {\varphi ^{(2)} (0)\cosh \mu - \varphi ^{(1)} (0)\sinh \mu = \varphi ^{(2)} (1)\cosh \nu + \varphi ^{(1)} (1)\sinh \nu = 0} \\ \end{array} } \right.$$ with constants $$\mu ,\nu \in \mathbb{C}.$$ Under the assumption that p21, p22 are known, we prove a uniqueness theorem and provide a reconstruction formula for p11 and p12 from the spectral characteristics consisting of one spectrum and the associated norming constants.  相似文献   

8.
This paper deals with the splitting number ${\mathfrak{s}}$ and polarized partition relations. In the first section we define the notion of strong splitting families, and prove that its existence is equivalent to the failure of the polarized relation $$\left(\begin{array}{lll}\mathfrak{s} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}\mathfrak{s} \\ \omega \end{array} \right)}^{1, 1}_{2}$$ . We show that the existence of a strong splitting family is consistent with ZFC, and that the strong splitting number equals the splitting number, when it exists. Consequently, we can put some restriction on the possibility that s is singular. In the second section we deal with the polarized relation under the weak diamond, and we prove that the strong polarized relation $$\left(\begin{array}{lll}2^{\omega} \\ \omega \end{array} \right) \rightarrow {\left(\begin{array}{ll}2^{\omega} \\ \omega \end{array} \right)}^{1, 1}_{2}$$ is consistent with ZFC, even when cf ${(2^{\omega}) = \aleph_{1}}$ (hence the weak diamond holds).  相似文献   

9.
Let f and g be distributions and let gn = (g * δn)(x), where δn (x) is a certain converging to the Dirac delta function. The non-commutative neutrix product fog of f and g to be the limit of the sequence {fgn }, provided its limit h exists in the sense that sequence is defined N-lim n-∞(f(x)g,, (x), φ(x)〉 = (h(x), φ(x)},for all functions p in 2. It is proved that (x^λ+1n^px+)0(x^μ+1n^qx+)=x+^λμ1n^p+qx+,(x^λ-1n^qx-)=x-^λ+μ1n^p+qx-,for λ+μ〈-1; λ,μ, λ+μ≠-1,-2…and p,q=0,1,2……  相似文献   

10.
In this paper it is studied that the generated theory of wave recursive interpolation of uniform T-subdivi-ston scheme include wave parameter.The paper analyses the convergence of sequences of control polygons produced by wave recursive interpolation T-subdivision scheme of the formj=l,2,…,T-1;m=O,l,…,nTk;k=0,l,2,…,and differentiability of the limit curve.  相似文献   

11.
The modified Bernstein-Durrmeyer operators discussed in this paper are given byM_nf≡M_n(f,x)=(n+2)P_(n,k)∫_0~1p_n+1.k(t)f(t)dt,whereWe will show,for 0<α<1 and 1≤p≤∞  相似文献   

12.
N. Ruškuc 《Semigroup Forum》1995,51(1):319-333
Some presentations for the semigroups of all 2×2 matrices and all 2×2 matrices of determinant 0 or 1 over the field GF(p) (p prime) are given. In particular, if <a, b, c‖ R> is any (semigroup) presentation for the general linear group in terms of generators $$A = \left( {\begin{array}{*{20}c} 1 & 0 \\ 1 & 1 \\ \end{array} } \right),B = \left( {\begin{array}{*{20}c} 1 & 1 \\ 0 & 1 \\ \end{array} } \right),C = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & \xi \\ \end{array} } \right),$$ where ζ is a primitive root of 1 modulop, then the presentation $$\langle a,b,c,t|R,t^2 = ct = tc = t,tba^{p - 1} t = 0,b^{\xi - 1} atb = a^{\xi - 1} tb^\xi a^{1 - \xi - 1} \rangle $$ defines the semigroup of all 2×2 matrices over GF (2,p) in terms of generatorsA, B, C and $$T = \left( {\begin{array}{*{20}c} 1 & 0 \\ 0 & 0 \\ \end{array} } \right).$$ Generating sets and ranks of various matrix semigroups are also found.  相似文献   

13.
For the numerical evaluation of Cauchy principal value integrals of the form f(x)(x - λ) -1dx withλ ∈ (-1,1)and f ∈ C1[-1,1], we investigate the quadrature formula Q(n+1)Spl1[·;λ] obtained by replacing the integrand function f by its piecewise linear interpolant at an equidistant set of nodes as proposed by Rabinoivitz (Math. Comp. , 51:741 - 747,1988). We give upper bounds for the Peano - type error constantsfor s∈ {1,2}. These are the best possible constants in inequalities of the typeFurthermore, we prove that our upper bounds are asymptotically sharp.  相似文献   

14.
Let Ω be a bounded domain in ${\mathbb{R}^2}$ with smooth boundary. We consider the following singular and critical elliptic problem with discontinuous nonlinearity: $$(P_\lambda)\left \{\begin{array}{ll} - \Delta u = \lambda \left(\frac{m(x, u) e^{\alpha{u}^2}}{|x|^{\beta}} + u^{q}g(u - a)\right),\quad{u} > 0 \quad {\rm in} \quad \Omega\\u \quad \quad = 0\quad {\rm on} \quad \partial \Omega \end{array}\right.$$ where ${0\leq q < 1 ,0< \alpha\leq4\pi}$ and ${\beta \in [0, 2)}$ such that ${\frac{\beta}{2} + \frac{\alpha}{4\pi} \leq 1}$ and ${{g(t - a) = \left\{\begin{array}{ll}1, t \leq a\\ 0, t > a.\end{array}\right.}}$ Under the suitable assumptions on m(x, t) we show the existence and multiplicity of solutions for maximal interval for λ.  相似文献   

15.
In this paper we consider a p-Laplacian equation with strong Allee effect growth rate and Dirichlet boundary condition $$\left\{\begin{array}{ll} {\rm div} (|\nabla u|^{p-2} \nabla u) + \lambda f(x,u)=0, &\quad x \in \Omega, \\ u=0, &\quad x \in \partial \Omega, \qquad \qquad ^ {(P_\lambda)} \end{array}\right.$$ where Ω is a bounded smooth domain in ${\mathbb{R}^N}$ for ${N \ge 1, p > 1}$ , and λ is a positive parameter. By using variational methods and a suitable truncation technique, we prove that problem (P λ) has at least two positive solutions for large parameter and it has no positive solutions for small parameter. In addition, a nonexistence result is investigated.  相似文献   

16.
Let X and Y be fences of size n and m, respectively and n, m be either both even or both odd integers (i.e., |m-n| is an even integer). Let \(r = \left\lfloor {{{(n - 1)} \mathord{\left/ {\vphantom {{(n - 1)} 2}} \right. \kern-0em} 2}} \right\rfloor\) . If 1<n<-m then there are \(a_{n,m} = (m + 1)2^{n - 2} - 2(n - 1)(\begin{array}{*{20}c} {n - 2} \\ r \\ \end{array} )\) of strictly increasing mappings of X to Y. If 1<-m<-n<-2m and s=1/2(n?m) then there are a n,m+b n,m+c n of such mappings, where $$\begin{gathered} b_{n,m} = 8\sum\limits_{i = 0}^{s - 2} {\left( {\begin{array}{*{20}c} {m + 2i + 1} \\ l \\ \end{array} } \right)4^{s - 2 - 1} } \hfill \\ {\text{ }}c_n = \left\{ \begin{gathered} \left( {\begin{array}{*{20}c} {n - 1} \\ {s - 1} \\ \end{array} } \right){\text{ if both }}n,m{\text{ are even;}} \hfill \\ {\text{ 0 if both }}n,m{\text{ are odd}}{\text{.}} \hfill \\ \end{gathered} \right. \hfill \\ \end{gathered} $$   相似文献   

17.
стАтьь ьВльЕтсь пРОД ОлжЕНИЕМ пРЕДыДУЩЕИ ОДНОИМЕННОИ РАБОты АВтОРА, гДЕ ИжУ ЧАлсь пОРьДОк ВЕлИЧИН пРИ УслОВИьх, ЧтО α>-1/2, Рα >- 1 И ЧтО МАтРИцАt nk УДОВлЕтВОРьЕт НЕкОт ОРОМУ УслОВИУ РЕгУльРНОстИ. жДЕсь ДОкАжыВАЕтсь, Ч тО ЕслИfH Ω, тО ВыпОлНь Етсь ОцЕНкА $$\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left| {\sigma _k^\alpha \left( x \right) - f\left( x \right)} \right|^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} = O\left( {\left\{ {\frac{1}{{\lambda _n }}\mathop \Sigma \limits_{k = n - \lambda _n + 1}^n \left( {\frac{1}{k}\mathop \smallint \limits_{{1 \mathord{\left/ {\vphantom {1 k}} \right. \kern-\nulldelimiterspace} k}}^{2\pi } \frac{{\omega \left( t \right)}}{{t^2 }}dt} \right)^p } \right\}^{{1 \mathord{\left/ {\vphantom {1 p}} \right. \kern-\nulldelimiterspace} p}} + \left( {\frac{{\lambda _n }}{n}} \right)^\alpha \omega \left( {\frac{1}{n}} \right)} \right)$$ 1=1, λn+1n≦1), А тАкжЕ ЧтО Ёт А ОцЕНкА ОкОНЧАтЕльН А В сВОИх тЕРМИНАх; пОДОБ НыИ РЕжУль-тАт спРАВЕДлИВ тАкжЕ И Дль сОпРьжЕННОИ ФУНкцИИ . ДОкАжыВАЕтсь, ЧтО Усл ОВИьα>?1/2 И>?1, кОтОРыЕ Б ылИ НАлОжЕНы В УпОМьНУтО И ВышЕ ЧАстИ I, сУЩЕстВЕН Ны.  相似文献   

18.
Let F n be the nth Fibonacci number. The Fibonomial coefficients \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F\) are defined for nk > 0 as follows $$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = \frac{{F_n F_{n - 1} \cdots F_{n - k + 1} }} {{F_1 F_2 \cdots F_k }},$$ with \(\left[ {\begin{array}{*{20}c} n \\ 0 \\ \end{array} } \right]_F = 1\) and \(\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right]_F = 0\) . In this paper, we shall provide several identities among Fibonomial coefficients. In particular, we prove that $$\sum\limits_{j = 0}^{4l + 1} {\operatorname{sgn} (2l - j)\left[ {\begin{array}{*{20}c} {4l + 1} \\ j \\ \end{array} } \right]_F F_{n - j} = \frac{{F_{2l - 1} }} {{F_{4l + 1} }}\left[ {\begin{array}{*{20}c} {4l + 1} \\ {2l} \\ \end{array} } \right]_F F_{n - 4l - 1} ,}$$ holds for all non-negative integers n and l.  相似文献   

19.
We consider the second-order matrix differential operator $$N = \left( {\begin{array}{*{20}c} { - \frac{d}{{dx}}\left( {p_0 \frac{d}{{dx}}} \right) + p_1 } \\ r \\ \end{array} \begin{array}{*{20}c} r \\ { - \frac{d}{{dx}}\left( {q_0 \frac{d}{{dx}}} \right) + q_1 } \\ \end{array} } \right)$$ determined by the expression Nφ, [0 ?x < ∞), where \(\phi = \left( {\begin{array}{*{20}c} U \\ V \\ \end{array} } \right)\) . It has been proved that if p0, q0, p1, q1,r satisfy certain conditions, then N is in the limit point case at ∞. It has been also shown that certain differential operators in the Hilbert space L2 of vectors, generated by the operator N, are symmetric and self-adjoint.  相似文献   

20.
Let L denote the space of measurable 1-periodic essentially bounded functionsf(x) with ∥f∥=vrai sup ¦f(x)¦,S k (f, x) thek-th partial sum of the Walsh-Fourier series off(x),L k thek-th Lebesgue constant. The following theorem is proved. Theorem. Letλ={λ K } be a sequence of nonnegative numbers, $$\left\| \lambda \right\|_1 = \mathop \sum \limits_{k = 1}^\infty \lambda _k< \infty ,\left\| \lambda \right\|_2 = (\mathop \sum \limits_{k = 1}^\infty \lambda _k^2 )^{1/2} ,m = log[(\left\| \lambda \right\|_1 /\left\| \lambda \right\|_2 )]$$ .Then for an arbitrary function f∈L the following inequalities hold true $$\begin{gathered} \left\| {\mathop \sum \limits_{k = 1}^\infty \lambda _k \left| {S_k (f,x)} \right|} \right\| \leqq \mathop \sum \limits_{k = 1}^\infty \lambda _k (L_{[k2 - 2m]} + c)\left\| f \right\|, \hfill \\ \hfill \\ \mathop \sum \limits_{k = 1}^\infty \lambda _k \left\| {S_k (f)} \right\| \leqq \mathop \sum \limits_{k = 1}^\infty \lambda _k (L_{[k2 - m]} + c)\left\| f \right\| \hfill \\ \end{gathered} $$ , where[y] denotes integral part of a number y>0 and c is an absolute constant. A corollary of the above theorem is that for each functionfεL the Lebesgue estimate can be refined for a certain sequence of indices, while the growth order of Lebesgue constants along that sequence can be arbitrarily close to the logarithmic one. “In the mean”, however, the Lebesgue estimate is exact. A further corollary deals with strong summability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号