首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
TiO2 is a wide-band-gap semiconductor, and it is an important material for photocatalysis. Here we report an experimental investigation of the electronic structure of (TiO2)n clusters and how their band gap evolves as a function of size using anion photoelectron spectroscopy (PES). PES spectra of (TiO2)n- clusters for n = 1-10 have been obtained at 193 nm (6.424 eV) and 157 nm (7.866 eV). The high photon energy at 157 nm allows the band gap of the TiO2 clusters to be clearly revealed up to n = 10. The band gap is observed to be strongly size-dependent for n < 7, but it rapidly approaches the bulk limit at n = 7 and remains constant up to n = 10. All PES features are observed to be very broad, suggesting large geometry changes between the anions and the neutral clusters due to the localized nature of the extra electron in the anions. The measured electron affinities and the energy gaps are compared with available theoretical calculations. The extra electron in the (TiO2)n- clusters for n > 1 appears to be localized in a tricoordinated Ti atom, creating a single Ti3+ site and making these clusters ideal molecular models for mechanistic understanding of TiO2 surface defects and photocatalytic properties.  相似文献   

2.
Theoretical study on the structures of neutral and singly charged Si(n)Li(p)((+)) (n=1-6, p=1-2) clusters have been carried out in the framework of the density functional theory (DFT) with the B3LYP functional. The structures of the neutral Si(n)Li(p) and cationic Si(n)Li(p)(+) clusters are found to keep the frame of the corresponding Si(n), Li species being adsorbed at the surface. The localization of the lithium cation is not the same one as that of the neutral atom. The Li(+) ion is preferentially located on a Si atom, while the Li atom is preferentially attached at a bridge site. A clear parallelism between the structures of Si(n)Na(p) and those of Si(n)Li(p) appears. The population analysis show that the electronic structure of Si(n)Li(p) can be described as Si(n)(p)(-)+pLi(+) for the small sizes considered. Vertical and adiabatic ionization potentials, adsorption energies, as well as electric dipole moments and static dipolar polarizabilities, are calculated for each considered isomer of neutral species.  相似文献   

3.
The neutral Si n K (n = 2–8) clusters and their anions have been systematically studied by means of the higher level of Gaussian-3 schemes. Equilibrium geometries and electron affinities have been calculated and are discussed for each considered size. For neutral Si n K clusters, the ground state structure is found to be “attaching structure”, in which the K atom is bound to Si n clusters. The most stable isomer for their anions, however, is found to be “substitutional structures”, which is derived from Si(n+1) by replacing the Si atom with a K. The dissociation energies of K atom from the lowest energy structures of Si n K have also been estimated to examine relative stabilities.  相似文献   

4.
The geometric structures of neutral and cationic Si(n)Li(m)(0/+) clusters with n = 2-11 and m = 1, 2 are investigated using combined experimental and computational methods. The adiabatic ionization energy and vertical ionization energy (VIE) of Si(n)Li(m) clusters are determined using quantum chemical methods (B3LYP/6-311+G(d), G3B3, and CCSD(T)/aug-cc-pVxZ with x = D,T), whereas experimental values are derived from threshold photoionization experiments in the 4.68-6.24 eV range. Among the investigated cluster sizes, only Si(6)Li(2), Si(7)Li, Si(10)Li, and Si(11)Li have ionization thresholds below 6.24 eV and could be measured accurately. The ionization threshold and VIE obtained from the experimental photoionization efficiency curves agree well with the computed values. The growth mechanism of the lithium doped silicon clusters follows some simple rules: (1) neutral singly doped Si(n)Li clusters favor the Li atom addition on an edge or a face of the structure of the corresponding Si(n)(-) anion, while the cationic Si(n)Li(+) binds with one Si atom of the bare Si(n) cluster or adds on one of its edges, and (2) for doubly doped Si(n)Li(2)(0/+) clusters, the neutrals have the shape of the Si(n+1) counterparts with an additional Li atom added on an edge or a face of it, while the cations have both Li atoms added on edges or faces of the Si(n)(-) clusters.  相似文献   

5.
The molecular structures, electron affinities, and dissociation energies of the Si(n)H/Si(n)H- (n = 4-10) species have been examined via five hybrid and pure density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. The geometries are fully optimized with each DFT method independently. The three different types of neutral-anion energy separations presented in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first Si-H dissociation energies, D(e)(Si(n)H --> Si(n) + H) for neutral Si(n)H and D(e)(Si(n)H- --> Si(n)- + H) for anionic Si(n)H- species, have also been reported. The structures of the ground states of these clusters are traditional H-Si single-bond forms. The ground-state geometries of Si5H, Si6H, Si8H, and Si9H predicted by the DFT methods are different from previous calculations, such as those obtained by Car-Parrinello molecular dynamics and nonorthogonal tight-binding molecular dynamics schemes. The most reliable EA(ad) values obtained at the B3LYP level of theory are 2.59 (Si4H), 2.84 (Si5H), 2.86 (Si6H), 3.19 (Si7H), 3.14 (Si8H), 3.36 (Si9H), and 3.56 (Si10H) eV. The first dissociation energies (Si(n)H --> Si(n) + H) predicted by all of these methods are 2.20-2.29 (Si4H), 2.30-2.83 (Si5H), 2.12-2.41 (Si6H), 1.75-2.03 (Si7H), 2.41-2.72 (Si8H), 1.86-2.11 (Si9H), and 1.92-2.27 (Si10H) eV. For the negatively charged ion clusters (Si(n)H- --> Si(n)- + H), the dissociation energies predicted are 2.56-2.69 (Si4H-), 2.80-3.01 (Si5H-), 2.86-3.06 (Si6H-), 2.80-3.03 (Si7H-), 2.69-2.92 (Si8H-), 2.92-3.18 (Si9H-), and 2.89-3.25 (Si10H-) eV.  相似文献   

6.
The geometric and electronic structures of Si(n), Si(n)-, and PSi(n-1) clusters (2 < or = n < or = 13) have been investigated using the ab initio molecular orbital theory formalism. The hybrid exchange-correlation energy functional (B3LYP) and a standard split-valence basis set with polarization functions (6-31+G(d)) were employed to optimize geometrical configurations. The total energies of the lowest energy isomers thus obtained were recalculated at the MP2/aug-cc-pVTZ level of theory. Unlike positively charged clusters, which showed similar structural behavior as that of neutral clusters [Nigam et al., J. Chem. Phys. 121, 7756 (2004)], significant geometrical changes were observed between Si(n) and Si(n)- clusters for n = 6, 8, 11, and 13. However, the geometries of P substituted silicon clusters show similar growth as that of negatively charged Si(n) clusters with small local distortions. The relative stability as a function of cluster size has been verified based on their binding energies, second difference in energy (Delta2 E), and fragmentation behavior. In general, the average binding energy of Si(n)- clusters is found to be higher than that of Si(n) clusters. For isoelectronic PSi(n-1) clusters, it is found that although for small clusters (n < 4) substitution of P atom improves the binding energy of Si(n) clusters, for larger clusters (n > or = 4) the effect is opposite. The fragmentation behavior of these clusters reveals that while small clusters prefer to evaporate monomer, the larger ones dissociate into two stable clusters of smaller size. The adiabatic electron affinities of Si(n) clusters and vertical detachment energies of Si(n)- clusters were calculated and compared with available experimental results. Finally, a good agreement between experimental and our theoretical results suggests good prediction of the lowest energy isomeric structures for all clusters calculated in the present study.  相似文献   

7.
The ground state structures of neutral and anionic clusters of Na(n)Si(m) (1 ≤ n ≤ 3, 1 ≤ m ≤ 11) have been determined using genetic algorithm incorporated in first principles total energy code. The size dependence of the structural and electronic properties is discussed in detail. It is found that the lowest-energy structures of Na(n)Si(m) clusters resemble those of the pure Si clusters. Interestingly, Na atoms in neutral Na(n)Si(m) clusters are usually well separated by the Si(m) skeleton, whereas Na atoms can form Na-Na bonds in some anionic clusters. The ionization potentials, adiabatic electron affinities, and photoelectron spectra are also calculated and the results compare well with the experimental data.  相似文献   

8.
The structures and energies of As(n) (n = 2-8) neutrals, anions, and cations have been systematically investigated by means of the G3 schemes. The electron affinities, ionization potentials, binding energies, and several dissociation energies have been calculated and compared with limited experimental values. The results revealed that the potential surfaces of neutral As(n) clusters are very shallow, and two types of structural patterns compete with each other for the ground-state structure of As(n) with n ≥ 6. One type is derived from the benzvalene form of As(6), and another is derived from the trigonal prism of As(6). The previous photoelectron spectrum (taken from J. Chem. Phys. 1998 , 109 , 10727 ) for As(3) has been reassigned in light of the G3 results. The experimental electron affinities of As(3) were measured to be 1.81 eV, not 1.45 eV. We inferred from the conclusion of G3 and density functional theory that the experimental electron affinities of 1.7 and 3.51 eV for As(5) are unreliable. The reliable electron affinities were predicted to be 0.83 eV for As(2), 1.80 eV for As(3), 0.54 eV for As(4), 3.01 eV for As(5), 2.08 eV for As(6), 2.93 eV for As(7), and 2.02 eV for As(8). The G3 ionization potentials were calculated to be 9.87 eV for As(2), 7.33 eV for As(3), 8.65 eV for As(4), 6.68 eV for As(5), 7.97 eV for As(6), 6.58 eV for As(7), and 7.65 eV for As(8). The binding energies per atom were evaluated to be 1.99 eV for As(2), 2.01 eV for As(3), 2.61 eV for As(4), 2.39 eV for As(5), 2.51 eV for As(6), 2.55 eV for As(7), and 2.67 eV for As(8). These theoretical values of As(2), As(3), and As(4) are in excellent agreement with those of experimental results. Several dissociation energies were carried out to examine relative stabilities. This characterized the even-numbered clusters as more stable than the odd-numbered species.  相似文献   

9.
Negatively charged sodium auride clusters, NanAun- (n = 1-3), have been investigated experimentally using photoelectron spectroscopy and ab initio calculations. Well-resolved electronic transitions were observed in the photoelectron spectra of NanAun- (n = 1-3) at several photon energies. Very large band gaps were observed in the photoelectron spectra of the anion clusters, indicating that the corresponding neutral clusters are stable closed-shell species. Calculations show that the global minimum of Na2Au2- is a quasi-linear species with Cs symmetry. A planar isomer of D2h symmetry is found to be 0.137 eV higher in energy. The two lowest energy isomers of Na3Au3- consist of three-dimensional structures of Cs symmetry. The global minimum of Na3Au3- has a bent-flake structure lying 0.077 eV below a more compact structure. The global minima of the sodium auride clusters are confirmed by the good agreement between the calculated electron detachment energies of the anions and the measured photoelectron spectra. The global minima of neutral Na2Au2 and Na3Au3 are found to possess higher symmetries with a planar four-membered ring (D2h) and a six-membered ring (D3h) structure, respectively. The chemical bonding in the sodium auride clusters is found to be highly ionic with Au acting as the electron acceptor.  相似文献   

10.
Ab initio simulations and calculations were used to study the structures and stabilities of copper oxide clusters, Cu(n)O(n) (n = 1-8). The lowest energy structures of neutral and charged copper oxide clusters were determined using primarily the B3LYP/LANL2DZ model chemistry. For n ≥ 4, the clusters are nonplanar. Selected electronic properties including atomization energies, ionization energies, electron affinities, and Bader charges were calculated and examined as a function of n.  相似文献   

11.
The molecular structures, electron affinities, and dissociation energies of the As(n)/As(-) (n) (n = 1-5) species have been examined using six density functional theory (DFT) methods. The basis set used in this work is of double-zeta plus polarization quality with additional diffuse s- and p-type functions, denoted DZP++. These methods have been carefully calibrated (Chem Rev 2002, 102, 231) for the prediction of electron affinities. The geometries are fully optimized with each DFT method independently. Three different types of the neutral-anion energy separations reported in this work are the adiabatic electron affinity (EA(ad)), the vertical electron affinity (EA(vert)), and the vertical detachment energy (VDE). The first dissociation energies D(e)(As(n-1)-As) for the neutral As(n) species, as well as those D(e)(As(-) (n-1)-As) and D(e) (As(n-1)-As(-)) for the anionic As(-) (n) species, have also been reported. The most reliable adiabatic electron affinities, obtained at the DZP++ BLYP level of theory, are 0.90 (As), 0.74 (As(2)), 1.30 (As(3)), 0.49 (As(4)), and 3.03 eV (As(5)), respectively. These EA(ad) values for As, As(2), and As(4) are in good agreement with experiment (average absolute error 0.09 eV), but that for As(3) is a bit smaller than the experimental value (1.45 +/- 0.03 eV). The first dissociation energies for the neutral arsenic clusters predicted by the B3LYP method are 3.93 eV (As(2)), 2.04 eV (As(3)), 3.88 eV (As(4)), and 1.49 eV (As(5)). Compared with the available experimental dissociation energies for the neutral clusters, the theoretical predictions are excellent. Two dissociation limits are possible for the arsenic cluster anions. The atomic arsenic results are 3.91 eV (As(-) (2) --> As(-) + As), 2.46 eV (As(-) (3) --> As(-) (2) + As), 3.14 eV (As(-) (4) --> As(-) (3) + As), and 4.01 eV (As(-) (5) --> As(-) (4) + As). For dissociation to neutral arsenic clusters, the predicted dissociation energies are 2.43 eV (As(-) (3) --> As(2) + As(-)), 3.53 eV (As(-) (4) --> As(3) + As(-)), and 3.67 eV (As(-) (5) --> As(4) + As(-)). For the vibrational frequencies of the As(n) series, the BP86 and B3LYP methods produce good results compared with the limited experiments, so the other predictions with these methods should be reliable.  相似文献   

12.
The equilibrium geometries, electronic structures and electronic properties including adiabatic electron affinity(AEA), vertical detachment energy(VDE), simulated photoelectron spectroscopy, HOMO-LUMO gap, charge transfer, and magnetic moment for DySi_n(n = 3~10) clusters and their anions were systematically investigated by using the ABCluster global search technique combined with the B3 LYP and B2 PLYP density functional methods. The results showed that the lowest energy structure of neutral DySi_n(n = 3~10) can be regarded as substituting a Si atom of the ground state structure of Si_(n+1) with a Dy atom. For anions, the extra electron effect on the structure is significant. Starting from n = 6, the lowest energy structures of DySi_n~?(n = 3~10) differ from those of neutral. The ground state is quintuplet electronic state for DySi_n(n = 3~10) excluding DySi_4 and DySi_9, which is a septet electronic state. For anions, the ground state is a sextuplet electronic state. The reliable AEA and VDE of DySi_n(n = 3~10) are reported. Analyses of HOMO-LUMO gaps indicated that doping Dy atom to silicon clusters can improve significantly their photochemical reactivity, especially for DySi_9. Analyses of NPA revealed that the 4 f electrons of Dy in DySi_4, DySi_9, and DySi_n~? with n = 4 and 6~10 participate in bonding. That is, DySi_nbelongs to the AB type. The 4 f electrons of Dy atom provide substantially the total magnetic moments for DySi_n and their anions. The dissociation energies of Ln(Ln = Pr, Sm, Eu, Gd, Ho, and Dy) fromLn Sin and their anions were evaluated to examine the relative stabilities.  相似文献   

13.
Using the first-principles method with the generalized gradient approximation, the authors have studied the structural and electronic properties of Al(12)X(+) (X=C, Si, Ge, Sn, and Pb) clusters in detail. The ground state of Al(12)C(+) is a low symmetry C(s) structure instead of an icosahedron. However, the Si, Ge, Sn, and Pb atom doped cationic clusters favor icosahedral structures. The ground states for Al(12)Si(+) and Al(12)Ge(+) are icosahedra, while the C(5nu) structures optimized from an icosahedron with a vertex capped by a tetravalent atom have the highest binding energy for Al(12)Sn(+) and Al(12)Pb(+) clusters. The I(h) structure and the C(5nu) structure are almost degenerate for Al(12)Ge(+), whose binding energy difference is only 0.03 eV. The electronic properties are altered much by removing an electron from the neutral cluster. The binding strength of a valence electron is enhanced, while the binding energy of the cluster is reduced much. Due to the open electronic shell, the band gaps between the highest occupied molecular orbital and the lowest unoccupied molecular orbital are approximately 0.3 eV for the studied cationic clusters.  相似文献   

14.
The structures, binding energies, and electronic properties of one oxygen atom (O) and two oxygen atoms (2O) adsorption on silicon clusters Si(n) with n ranging from 5 to 10 are studied systematically by ab initio calculations. Twelve stable structures are obtained, two of which are in agreement with those reported in previous literature and the others are new structures that have not been proposed before. Further investigations on the fragmentations of Si(n)O and Si(n)O2 (n = 5-10) clusters indicate that the pathways Si(n)O --> Si(n-1) + SiO and Si(n)O2 --> Si(n-2) + Si2O2 are most favorable from thermodynamic viewpoint. Among the studied silicon oxide clusters, Si8O, Si9O, Si5O2 and Si8O2 correspond to large adsorption energies of silicon clusters with respect to O or 2O, while Si8O, with the smallest dissociation energy, has a tendency to separate into Si7 + SiO. Using the recently developed quasi-atomic minimal-basis-orbital method, we have also calculated the unsaturated valences of the neutral Si(n) clusters. Our calculation results show that the Si atoms which have the largest unsaturated valences are more attractive to O atom. Placing O atom right around the Si atoms with the largest unsaturated valences usually leads to stable structures of the silicon oxide clusters.  相似文献   

15.
The molecular structures, electron affinities, and dissociation energies of neutral Si n Li (n = 2–10) species and their anions have been studied by the B3LYP and the BPW91 methods in conjunction with a DZP++ basis set. The geometries have been fully optimized with each of the proposed methods. The ground state structure of neutral Si n Li keeps the corresponding Si n framework unchanged. For anion, the corresponding Si n (or ${{\rm Si}_{n}^{-}}$ ) framework changes largely when n ≥ 7. To evaluate the stability of the resulting anions we have calculated the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). The dissociating energies of Li from the lowest energy structures of neutral Si n Li and their anions are calculated to examine relative stabilities.  相似文献   

16.
Photoelectron spectroscopy has been conducted for a series of (CrO3)n(-) (n = 1-5) clusters and compared with density functional calculations. Well-resolved photoelectron spectra were obtained for (CrO3)n(-) (n = 1-5) at 193 nm (6.424 eV) and 157 nm (7.866 eV) photon energies, allowing for accurate measurements of the electron binding energies, low-lying electronic excitations for n = 1 and 2, and the energy gaps. Density functional and molecular orbital theory (CCSD(T)) calculations were performed to locate the ground and low-lying excited states for the neutral clusters and to calculate the electron binding energies of the anionic species. The experimental and computational studies firmly establish the unique low-spin, nonplanar, cyclic ring structures for (CrO3)n and (CrO3)n(-) for n > or = 3. The structural parameters of (CrO3)n are shown to converge rapidly to those of the bulk CrO3 crystal. The extra electron in (CrO3)n(-) (n > or = 2) is shown to be largely delocalized over all Cr centers, in accord with the relatively sharp ground-state photoelectron bands. The measured energy gaps of (CrO3)n exhibit a sharp increase from n = 1 to n = 3 and approach to the bulk value of 2.25 eV at n = 4 and 5, consistent with the convergence of the structural parameters.  相似文献   

17.
Developments in the preparation of new materials for microelectronics are focusing new attention on molecular systems incorporating several arsenic atoms. A systematic investigation of the As2Fn/As2Fn- systems was carried out using Density Functional Theory methods and a DZP++ quality basis set. Global and low-lying local geometric minima and relative energies are discussed and compared. The three types of neutral-anion separations reported in this work are: the adiabatic electron affinity (EAad), the vertical electron affinity (EAvert), and the vertical detachment energy (VDE). Harmonic vibrational frequencies pertaining to the global minimum for each compound are reported. From the first four studied species (As2Fn, n=1-4), all neutral molecules and their anions are shown to be stable with respect to As-As bond breaking. The neutral As2F molecule and its anion are predicted to have Cs symmetry. We find the trans F-As-As-F isomer of C2h symmetry and a pyramidalized vinylidene-like As-As-F2- isomer of Cs symmetry to be the global minima for the As2F2 and As2F2- species, respectively. The lowest lying minima of As2F3 and As2F3- are vinyl radical-like structures F-As-As-F2 of Cs symmetry. The neutral As2F4 global minimum is a trans-bent (like Si2H4) F2-As-As-F2 isomer of C2 symmetry, while its anion is predicted to have an unusual fluorine-bridged (C(1)) structure. The global minima of the neutral As2Fn species, n=5-8, are weakly bound complexes, held together by dipole-dipole interactions. All such structures have the AsFm-AsFn form, where (m,n) is (2,3) for As2F5, (3,3) for As2F6, (4,3) for As2F7), and (5,3) for As2F8. For As2F8 the beautiful pentavalent F4As-AsF4 structure (analogous to the stable AsF5 molecule) lies about 30 kcal/mol above the AsF3 . . . AsF5 complex. The stability of AsF(5) depends crucially on the strong As-F bonds, and replacing one of these with an As-As bond (in F4As-AsF4) has a very negative impact on the molecule's stability. The anions As2Fn-, n=5-8, are shown to be stable with respect to the As-As bond breaking, and we predict that all of them have fluorine-bridged or fluorine-linked structures. The zero-point vibrational energy corrected adiabatic electron affinities are predicted to be 2.28 eV (As2F), 1.95 eV (As2F2), 2.39 eV (As2F3), 1.71 eV (As2F4), 2.72 eV (As2F5), 1.79 eV (As2F6), 5.26 eV (As2F7), and 3.40 eV (As2F8) from the BHLYP method. Vertical detachment energies are rather large, especially for species with fluorine-bridged global minima, having values up to 6.45 eV (As2F7, BHLYP).  相似文献   

18.
The ground-state structures of neutral, cationic, and anionic phosphorus clusters P(n), P(n)(+), and P(n)(-) (n = 3-15) have been calculated using the B3LYP/6-311+G* density functional method. The P(n)(+) and P(n)(-) (n = 3-15) clusters with odd n were found to be more stable than those with even n, and we provide a satisfactory explanation for such trends based on concepts of energy difference, ionization potential, electron affinity, and incremental binding energy. The result of odd/even alternations is in good accord with the relative intensities of cationic and anionic phosphorus clusters observed in mass spectrometric studies.  相似文献   

19.
Here we report negative electron affinities of NO(2)(-).(H2O)n clusters (n=0-30) obtained from density functional theory calculations and a simple correction to Koopmans' theorem. The method relies on the calculation of the detachment energy of the monoanion and its highest occupied molecular orbital and lowest unoccupied molecular orbital energies, and explicit calculations on the dianion itself are avoided. A good agreement with resonances in the cross section for neutral production in electron scattering experiments is found for n=0, 1, and 2. We find several isomeric structures of NO(2)(-).(H2O)2 of similar energy that elucidate the interplay between water-water and ion-water interactions. The topology is predicted to influence the electron affinity by 0.5 and 0.4 eV for NO(2)(-).(H2O) and NO(2)(-).(H2O)2, respectively. The electron affinity of larger clusters is shown to follow a (n+delta)-1/3 dependence, where delta=3 represents the number of water molecules that in volume, could replace NO(2) (-).  相似文献   

20.
Density functional theory involving generalized gradient approximation correlation functional is used to investigate the cluster series La @Si n (n=1-21). We find that the growth process of La @Si n (n=1-21) could be divided into three stages: First, La atom adheres to other Si atoms in the size range of 1相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号