首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Y Chang  QS Li  Y Xie  RB King 《Inorganic chemistry》2012,51(16):8904-8915
Recent experimental work (2010) on (Cy(3)P)(2)Pt(BO)Br indicates that the oxygen atom of the boronyl (BO) ligand is more basic than that in the ubiquitous CO ligand. This suggests that bridging BO ligands in unsaturated binuclear metal carbonyl derivatives should readily function as three-electron donor bridging ligands involving both the oxygen and the boron atoms. In this connection, density functional theory shows that three of the four lowest energy singlet Fe(2)(BO)(2)(CO)(7) structures have such a bridging η(2)-μ-BO group as well as a formal Fe-Fe single bond. In addition, all four of the lowest energy singlet Fe(2)(BO)(2)(CO)(6) structures have two bridging η(2)-μ-BO groups and formal Fe-Fe single bonds. Other Fe(2)(BO)(2)(CO)(n) (n = 7, 6) structures are found in which the two BO groups have coupled to form a bridging dioxodiborene (B(2)O(2)) ligand with B-B bonding distances of ~1.84 ?. All of these Fe(2)(μ-B(2)O(2))(CO)(n) structures have long Fe···Fe distances indicating a lack of direct iron-iron bonding. One of the singlet Fe(2)(BO)(2)(CO)(7) structures has such a bridging dioxodiborene ligand with cis stereochemistry functioning as a six-electron donor to the pair of iron atoms. In addition, the lowest energy triplet structures for both Fe(2)(BO)(2)(CO)(7) and Fe(2)(BO)(2)(CO)(6) have bridging dioxodiborene ligands with trans stereochemistry functioning as a four-electron donor to the pair of iron atoms.  相似文献   

2.
The iron trifluorophosphane complexes [Fe(PF(3))(n)] (n=4, 5), [Fe(2)(PF(3))(n)] (n=8, 9), [H(2)Fe(PF(3))(4)], and [Fe(2)(PF(2))(2)(PF(3))(6)] have been studied by density functional theory. The lowest energy structures of [Fe(PF(3))(4)] and [Fe(PF(3))(5)] are a triplet tetrahedron and a singlet trigonal bipyramid, respectively. Both cis and trans octahedral structures were found for [H(2)Fe(PF(3))(4)] with the cis isomer lying lower in energy by approximately 10 kcal mol(-1). The lowest energy structure for [Fe(2)(PF(3))(8)] has two [Fe(PF(3))(4)] units linked only by an iron-iron bond of length 2.505 A consistent with the formal Fe=Fe double bond required to give both iron atoms the favored 18-electron configuration. In the lowest energy structure for [Fe(2)(PF(3))(9)] one of the iron atoms has inserted into a P-F bond of one of the PF(3) ligands to give a structure [(F(3)P)(4)Fe<--PF(2)Fe(F)(PF(3))(4)] with a bridging PF(2) group and a direct Fe-F bond. A bridging PF(3) group is found in a considerably higher energy [Fe(2)(PF(3))(9)] structure at approximately 30 kcal mol(-1) above the global minimum. However, this bridging PF(3) group keeps the two iron atoms too far apart (approximately 4 A) for the direct iron-iron bond required to give the iron atoms the favored 18-electron configuration. The preferred structure for [Fe(2)(PF(2))(2)(PF(3))(6)] has a bridging PF(2) group, as expected. However, this bridging PF(2) group bonds to one of the iron atoms through an P-Fe covalent bond and to the other iron through an F-->Fe dative bond, leaving an uncomplexed phosphorus lone pair.  相似文献   

3.
Gong X  Li QS  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2010,49(23):10820-10832
Recently the first boronyl (oxoboryl) complex [(c-C(6)H(11))(3)P](2)Pt(BO)Br was synthesized. The boronyl ligand in this complex is a member of the isoelectronic series BO(-) → CO → NO(+). The cobalt carbonyl boronyls Co(BO)(CO)(4) and Co(2)(BO)(2)(CO)(7), with cobalt in the formal d(8) +1 oxidation state, are thus isoelectronic with the familiar homoleptic iron carbonyls Fe(CO)(5) and Fe(2)(CO)(9). Density functional theory predicts Co(BO)(CO)(4) to have a trigonal bipyramidal structure with the BO group in an axial position. The tricarbonyl Co(BO)(CO)(3) is predicted to have a distorted square planar structure, similar to those of other 16-electron complexes of d(8) transition metals. Higher energy Co(BO)(CO)(n) (n = 3, 2) structures may be derived by removal of one (for n = 3) or two (for n = 2) CO groups from a trigonal bipyramidal Co(BO)(CO)(4) structure. Structures with a CO group bridging 17-electron Co(CO)(4) and Co(BO)(2)(CO)(3) units and no Co-Co bond are found for Co(2)(BO)(2)(CO)(8). However, Co(2)(BO)(2)(CO)(8) is not viable because of the predicted exothermic loss of CO to give Co(2)(BO)(2)(CO)(7). The lowest lying Co(2)(BO)(2)(CO)(7) structure is a triply bridged (2BO + CO) structure closely related to the experimental Fe(2)(CO)(9) structure. However, other relatively low energy Co(2)(BO)(2)(CO)(7) structures are found, either with a single CO bridge, similar to the experimental Os(2)(CO)(8)(μ-CO) structure; or with 17-electron Co(CO)(4) and Co(BO)(2)(CO)(3) units joined by a single Co-Co bond with or without semibridging carbonyl groups. Both triplet and singlet Co(2)(BO)(2)(CO)(6) structures are found. The lowest lying triplet Co(2)(BO)(2)(CO)(6) structures have a Co(CO)(3)(BO)(2) unit coordinated to a Co(CO)(3) unit through the oxygen atoms of the boronyl groups with a non-bonding ~4.3 ? Co···Co distance. The lowest lying singlet Co(2)(BO)(2)(CO)(6) structures have either two three-electron donor bridging η(2)-μ-BO groups and no Co···Co bond or one such three-electron donor BO group and a formal Co-Co single bond.  相似文献   

4.
The variety of known very stable PF(3) metal derivatives analogous to metal carbonyls suggests the synthesis of SF(3) metal derivatives analogous to metal nitrosyls. However, the only known SF(3) metal complex is the structurally uncharacterized (Et(3)P)(2)Ir(CO)(Cl)(F)(SF(3)) synthesized by Cockman, Ebsworth, and Holloway in 1987 and suggested by electron counting to have a one-electron donor SF(3) group rather than a three-electron donor SF(3) group. In this connection, the possibility of synthesizing SF(3) metal derivatives analogous to metal nitrosyls has been investigated using density functional theory. The [M]SF(3) derivatives with [M] = V(CO)(5), Mn(CO)(4), Co(CO)(3), Ir(CO)(3), (C(5)H(5))Cr(CO)(2), (C(5)H(5))Fe(CO), and (C(5)H(5))Ni analogous to known metal nitrosyl derivatives are all predicted to be thermodynamically disfavored with respect to the corresponding [M](SF(2))(F) derivatives by energies ranging from 19.5 kcal/mol for Mn(SF(3))(CO)(4) to 5.4 kcal/mol for Co(SF(3))(CO)(3). By contrast, the isoelectronic [M]PF(3) derivatives with [M] = Cr(CO)(5), Fe(CO)(4), Ni(CO)(3), (C(5)H(5))Mn(CO)(2), (C(5)H(5))Co(CO), and (C(5)H(5))Cu are all very strongly thermodynamically favored with respect to the corresponding [M](PF(2))(F) derivatives by energies ranging from 64.3 kcal/mol for Cr(PF(3))(CO)(5) to 31.6 kcal/mol for (C(5)H(5))Co(PF(3))(CO). The known six-coordinate (Et(3)P)(2)Ir(CO)(Cl)(F)(SF(3)) is also predicted to be stable relative to the seven-coordinate (Et(3)P)(2)Ir(CO)(Cl)(F)(2)(SF(2)). Most of the metal SF(3) complexes found in this work are singlet structures containing three-electron donor SF(3) ligands with tetrahedral sulfur coordination. However, two examples of triplet spin state metal SF(3) complexes, namely, the lowest energy (C(5)H(5))Fe(SF(3))(CO) structure and a higher energy Co(SF(3))(CO)(3) structure, are found containing one-electron donor SF(3) ligands with pseudo square pyramidal sulfur coordination with a stereochemically active lone electron pair.  相似文献   

5.
Low-temperature oxidation of Fe(2)(S(2)C(n)H(2n)(CNMe)(6-x)(CO)x (n = 2, 3; x = 2, 3) affords a family of mixed carbonyl-isocyanides of the type [Fe(2)(S(2)C(n)H(2n)(CO)x(CNMe)(7-x)](2+). The degree of substitution is controlled by the RNC/Fe ratio, as well as the degree of initial substitution at iron, with tricarbonyl derivatives favoring more highly carbonylated products. The structures of the monocarbonyl derivatives [Fe(2)(S(2)C(n)H(2n))(mu-CO)(CNMe)(6)](PF(6))(2) (n = 2,3) established crystallographically and spectroscopically, are quite similar, with Fe---Fe distances of ca. 2.5 A, although the mu-CO is unsymmetrical in the propanedithiolate derivative. Isomeric forms of [Fe(2)(S(2)C(3)H(6))(CO)(CNMe)(6)](PF(6))(2) were characterized where the CO is bridging or terminal, the greatest structural difference being the 0.1 A elongation of the Fe---Fe distance when MeNC (vs CO) is bridging. In the dicarbonyl species, [Fe(2)(S(2)C(2)H(4))(mu-CO)(CO)(CNMe)(5)](PF(6))(2), the terminal CO ligand is situated at one of the basal sites, not trans to the Fe---Fe vector. Oxidation of Fe(2)(S(2)C(2)H(4))(CNMe)(3)(CO)(3) under 1 atm CO gives the deep pink tricarbonyl [Fe(2)(S(2)C(2)H(4))(CO)(3)(CNMe)(4)](PF(6))(2). DFT calculations show that a bridging CO or MeNC establishes a 3-center, 2-electron bond within the two Fe(II) centers, which would otherwise be nonbonding.  相似文献   

6.
Electron-rich polyisocyano derivatives Fe(2)(S(2)C(n)H(2n)(CO)(6-x)(CNMe)(x) (x approximately 4) undergo oxidatively induced (FeCp(2)(+)) reaction with additional CNMe to give [Fe(2)(SR)(2)(CNMe)(7)](PF(6))(2), a new class of iron thiolates. Crystallographic characterization established that the 34 e(-) dinuclear core resembles the oxidized (H(2)-binding) form of the active sites of the Fe-only hydrogenases, key features being the face-sharing bioctahedral geometry, the mu-CX ligand, and an Fe-Fe separation of 2.61 A. Oxidation of the phenylthiolate Fe(2)(SPh)(2)(CO)(2)(CNMe)(4) led to mononuclear [Fe(SPh)(CNMe)(5)](PF(6)), which is analogous to [Fe(2)(SR)(2)(CNMe)(10)](PF(6))(2) formed upon treatment of [Fe(2)(S(2)C(3)H(6))(CNMe)(7)](PF(6))(2) with excess CNMe.  相似文献   

7.
Rhenium carbonyl hydride chemistry dates back to the 1959 synthesis of HRe(CO)? by Hieber and Braun. The binuclear H?Re?(CO)? was subsequently synthesized as a stable compound with a central Re?(μ-H)? unit analogous to the B?(μ-H)? unit in diborane. The complete series of HRe(CO)(n) (n = 5, 4, 3) and H?Re?(CO)(n) (n = 9, 8, 7, 6) derivatives have now been investigated by density functional theory. In contrast to the corresponding manganese derivatives, all of the triplet rhenium structures are found to lie at relatively high energies compared with the corresponding singlet structures consistent with the higher ligand field splitting of rhenium relative to manganese. The lowest energy HRe(CO)? structure is the expected octahedral structure. Low-energy structures for HRe(CO)(n) (n = 4, 3) are singlet structures derived from the octahedral HRe(CO)? structure by removal of one or two carbonyl groups. For H?Re?(CO)? a structure HRe?(CO)?(μ-H), with one terminal and one bridging hydrogen atom, lies within 3 kcal/mol of the structure Re?(CO)?(η2-H?), similar to that of Re?(CO)??. For H?Re?(CO)(n) (n = 8, 7, 6) the only low-energy structures are doubly bridged singlet Re?(μ-H)?(CO)(n) structures. Higher energy dihydrogen complex structures are also found.  相似文献   

8.
In the pursuit of a "rotated" structure, and exploration of the influence of the aza nitrogen lone pair, the Fe(I)Fe(I) model complexes wherein two Fe(CO)(3-x)P(x) moieties are significantly twisted from the ideal configuration (torsion angle >30°) are reported. [Fe(2)(μ-S(CH(2))(2)N(i)Pr(X)(CH(2))(2)S)(CO)(4)(κ(2)-dppe)](2)(2+) (X = H, 4; Me, 5) prepared from protonation and methylation, respectively, of [Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(CO)(4)(κ(2)-dppe)](2), 1, possess Φ angles of 34.1 and 35.4° (av.), respectively. Such dramatic twist is attributed to asymmetric substitution within the Fe(2) unit in which a dppe ligand is coordinated to one Fe site in the κ(2)-mode. In the presence of the N···C(CO(ap)) interaction, the torsion angle is decreased to 10.8°, suggesting availability of lone pairs of the aza nitrogen sites within 1 is in control of the twist. Backbones of the bridging diphosphine ligands also affect distortion. For a shorter ligand, the more compact structure of [Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(μ-dppm)(CO)(4)](2), 7, is formed. Dppm in a bridging manner allows achievement of the nearly eclipsed configuration. In contrast, dppe in [Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(μ-dppe)(CO)(4)](2), 6, could twist the Fe(CO)(3-x)L(x) fragment to adopt the least strained structure. In addition, the NC(CO(ap)) interaction would direct the twist towards a specific direction for the closer contact. In return, the shorter N···C(CO(ap)) distance of 3.721(7) ? and larger Φ angle of 26.5° are obtained in 6. For comparison, 3.987(7) ? and 3.9° of the corresponding parameters are observed in 7. Conversion of (μ-dppe)[Fe(2)(μ-S(CH(2))(2)N(i)Pr(CH(2))(2)S)(CO)(5)](2), 2, to complex 1 via an associative mechanism is studied.  相似文献   

9.
Binuclear Cp(2)M(2)(μ-C(8)H(8)) derivatives have been synthesized for M = V, Cr, Co, and Ni and have now been studied theoretically for the entire first row of transition metals from Ti to Ni. The early transition metal derivatives Cp(2)M(2)(μ-C(8)H(8)) (M = Ti, V, Cr. Mn) are predicted to form low-energy cis-Cp(2)M(2)(μ-C(8)H(8)) structures with a folded C(8)H(8) ring (dihedral angle ~130°) and short metal-metal distances suggesting multiple bonding. These predicted structures are close to the experimental structures for M = V, Cr with V≡V and Cr≡Cr bond lengths of ~2.48 and ~2.36 ?, respectively. The middle to late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Mn, Fe, Co, Ni) with a twisted μ-C(8)H(8) ring and no metal-metal bonding. The hapticity of the central μ-C(8)H(8) ring in such structures ranges from five for Mn and Fe to four for Co and three for Ni and thus depend on the electronic requirements of the central metal atom. This leads to the favored 18-electron configuration for both metal atoms in the singlet Fe, Co, and Ni structures but only 17-electron metal configurations in the triplet Mn structure. In addition, the late transition metals form trans-Cp(2)M(2)(μ-C(8)H(8)) structures (M = Fe, Co, Ni), with the tub conformation of the μ-C(8)H(8) ring functioning as a tetrahapto (M = Fe, Co) or trihapto (M = Ni) ligand to each CpM group. A μ-C(8)H(8) ring in the tub conformation also bonds to two CpFe units as a bis(tetrahapto) ligand in both singlet and triplet cis-Cp(2)Fe(2)(μ-C(8)H(8)) structures.  相似文献   

10.
The reaction of Fe2(S2C2H4)(CO)6 with cis-Ph2PCH=CHPPh2 (dppv) yields Fe2(S2C2H4)(CO)4(dppv), 1(CO)4, wherein the dppv ligand is chelated to a single iron center. NMR analysis indicates that in 1(CO)4, the dppv ligand spans axial and basal coordination sites. In addition to the axial-basal isomer, the 1,3-propanedithiolate and azadithiolate derivatives exist as dibasal isomers. Density functional theory (DFT) calculations indicate that the axial-basal isomer is destabilized by nonbonding interactions between the dppv and the central NH or CH2 of the larger dithiolates. The Fe(CO)3 subunit in 1(CO)4 undergoes substitution with PMe3 and cyanide to afford 1(CO)3(PMe3) and (Et4N)[1(CN)(CO)3], respectively. Kinetic studies show that 1(CO)4 reacts faster with donor ligands than does its parent Fe2(S2C2H4)(CO)6. The rate of reaction of 1(CO)4 with PMe3 was first order in each reactant, k = 3.1 x 10(-4) M(-1) s(-1). The activation parameters for this substitution reaction, DeltaH = 5.8(5) kcal/mol and DeltaS = -48(2) cal/deg.mol, indicate an associative pathway. DFT calculations suggest that, relative to Fe2(S2C2H4)(CO)6, the enhanced electrophilicity of 1(CO)4 arises from the stabilization of a "rotated" transition state, which is favored by the unsymmetrically disposed donor ligands. Oxidation of MeCN solutions of 1(CO)3(PMe3) with Cp2FePF6 yielded [Fe2(S2C2H4)(mu-CO)(CO)2(dppv)(PMe3)(NCMe)](PF6)2. Reaction of this compound with PMe3 yielded [Fe2(S2C2H4)(mu-CO)(CO)(dppv)(PMe3)2(NCMe)](PF6)2.  相似文献   

11.
N-heterocyclic carbenes (NHCs) are shown to be reasonable mimics of imidazole ligands in dinitrosyl iron complexes determined through the synthesis and characterization of a series of {Fe(NO)(2)}(10) and {Fe(NO)(2)}(9) (Enemark-Feltham notation) complexes. Monocarbene complexes (NHC-iPr)(CO)Fe(NO)(2) (1) and (NHC-Me)(CO)Fe(NO)(2) (2) (NHC-iPr = 1,3-diisopropylimidazol-2-ylidene and NHC-Me = 1,3-dimethylimidazol-2-ylidene) are formed from CO/L exchange with Fe(CO)(2)(NO)(2). An additional equivalent of NHC results in the bis-carbene complexes (NHC-iPr)(2)Fe(NO)(2) (3) and (NHC-Me)(2)Fe(NO)(2) (4), which can be oxidized to form the {Fe(NO)(2)}(9) bis-carbene complexes 3(+) and 4(+). Treatment of complexes 1 and 2 with [NO]BF(4) results in the formation of uncommon trinitrosyl iron complexes, (NHC-iPr)Fe(NO)(3)(+) (5(+)) and (NHC-Me)Fe(NO)(3)(+) (6(+)), respectively. Cleavage of the Roussin's Red "ester" (μ-SPh)(2)[Fe(NO)(2)](2) with either NHC or imidazole results in the formation of (NHC-iPr)(PhS)Fe(NO)(2) (7) and (Imid-iPr)(PhS)Fe(NO)(2) (10) (Imid-iPr = 2-isopropylimidazole). The solid-state molecular structures of complexes 1, 2, 3, 4, 5(+), and 7 show that they all have pseudotetrahedral geometry. Infrared spectroscopic data suggest that NHCs are slightly better electron donors than imidazoles; electrochemical data are also consistent with what is expected for typical donor/acceptor abilities of the spectator ligands bound to the Fe(NO)(2) unit. Although the monoimidazole complex (Imid-iPr)(CO)Fe(NO)(2) (8) was observed via IR spectroscopy, attempts to isolate this complex resulted in the formation of a tetrameric {Fe(NO)(2)}(9) species, [(Imid-iPr)Fe(NO)(2)](4) (9), a molecular square analogous to the unsubstituted imidazole reported by Li and Wang et al. Preliminary NO-transfer studies demonstrate that the {Fe(NO)(2)}(9) bis-carbene complexes can serve as a source of NO to a target complex, whereas the {Fe(NO)(2)}(10) bis-carbenes are unreactive in the presence of a NO-trapping agent.  相似文献   

12.
Two asymmetrically disubstituted diiron complexes (micro-pdt)[Fe(CO)(3)][Fe(CO)(eta(2)-L)] (L = 1-methyl-3-(2-pyridyl)imidazol-2-ylidene (NHC(MePy)), 2; 1,3-bis(2-picolyl)imidazol-2-ylidene (NHC(diPic)), 4) and a mono-substituted diiron complex (mu-pdt)[Fe(CO)(3)][Fe(CO)(2)(NHC(diPic))] (3) were prepared as biomimetic models of the Fe-only hydrogenase active site. X-Ray studies show that the NHC(MePy) and NHC(diPic) ligands in 2 and 4 each coordinate to the single iron atom as NHC-Py chelating ligands in two basal positions and the NHC(diPic) ligand of complex 3 lies in an apical position as a monodentate ligand. The large ranges of the highest and the lowest nu(CO) frequencies of 2 and 4 reflect that the relatively uneven electron density on the two iron atoms of the 2Fe2S model complexes 2 and 4 is as that observed for mono-substituted diiron complexes of good donor ligands. The cyclic voltammograms and the electrochemical proton reduction by 2 and 3 were studied in the presence of HOAc to evaluate the effect of asymmetrical substitution of strong donor ligands on the redox properties of the iron atoms and on the electrocatalytic activity for proton reduction.  相似文献   

13.
The M?ssbauer effect spectra for a series of small [Fe(eta(5)-C(5)H(5))(CO)(x)()] substituted metallaborane complexes are reported, where x = 1 or 2. The pentaborane cage in compounds [Fe(eta(5)-C(5)H(5))(CO)(2)B(5)H(7)P(C(6)H(5))(2)] (1), [Fe(eta(5)-C(5)H(5))(CO)(2)B(5)H(8)] (2), and [(Fe(eta(5)-C(5)H(5))(CO)(2))(2)B(5)H(7)] (3) was found to act as a significantly better donor ligand than the ligands in a comparison group of previously reported [Fe(eta(5)-C(5)H(5))(CO)LX] complexes, where L = CO or PPh(3) and X = halide, pseudohalide, or alkyl ligands. These metallaborane complexes were found to most resemble their silyl analogues in M?ssbauer spectral parameters and the electronic distribution around the iron centers. In addition, the M?ssbauer data showed that the [&mgr;-2,3-(P(C(6)H(5))(2)B(5)H(7)](-) ligand was a superior donor to the corresponding unsubstituted [B(5)H(8)](-) ligand. The M?ssbauer spectral results for the metallaborane complexes studied were found to be in general agreement with the anticipated donor and accepting bonding considerations for the cage ligands based upon their infrared and (11)B NMR spectra and X-ray structural features. The M?ssbauer data for the [Fe(eta(5)-C(5)H(5))(CO)B(4)H(6)(P(C(6)H(5))(2))] (4) and [Fe(eta(5)-C(5)H(5))(CO)B(3)H(7)(P(C(6)H(5))(2))] (5) complexes, in comparison with compound 1, showed that as the borane cage becomes progressively smaller, it becomes a poorer donor ligand. A qualitative relationship was found between the observed M?ssbauer isomer shift data and the number of boron cage vertices for the structurally related [Fe(eta(5)-C(5)H(5))(CO)(x)B(y)H(z)P(C(6)H(5))(2)] complexes, where x = 1 or 2, y = 3-5, and z = 6 or 7. The X-ray crystallographic data for compounds 1, 2, 5, and [Fe(eta(5)-C(5)H(5))(CO)B(5)H(8)] (6) were also found to agree with the trends observed in the M?ssbauer spectra which showed that the s-electron density on the iron nucleus increases in the order 5 < 6 < 2 < 1. The X-ray crystal structure of complex 2 is also reported. Crystallographic data for 2: space group P2(1)/c (No. 14, monoclinic), a = 6.084(3) ?, b = 15.045(8) ?, c = 13.449(7) ?, beta = 99.69(5) degrees, V = 1213(1) ?(3), Z = 4 molecules/cell.  相似文献   

14.
Chen J  Chen S  Zhong L  Feng H  Xie Y  King RB 《Inorganic chemistry》2011,50(4):1351-1360
Methylborole iron tricarbonyl, (η(5)-C(4)H(4)BCH(3))Fe(CO)(3), is known experimentally and is a potential source of binuclear (C(4)H(4)BCH(3))(2)Fe(2)(CO)(n) (n = 5, 4, 3, 2, 1) derivatives through reactions such as photolysis. In this connection the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(5) structures are predicted theoretically to have a single bridging carbonyl group and Fe-Fe distances consistent with formal single bonds. The lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(4) structures have two bridging carbonyl groups and Fe═Fe distances suggesting formal double bonds. Analogously, the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO)(3) structures have three bridging carbonyl groups and very short Fe≡Fe distances suggesting formal triple bonds. The tetracarbonyl (C(4)H(4)BCH(3))(2)Fe(2)(CO)(4) is predicted to be thermodynamically unstable toward disproportionation into (C(4)H(4)BCH(3))(2)Fe(2)(CO)(5) + (C(4)H(4)BCH(3))(2)Fe(2)(CO)(3), whereas the tricarbonyl is thermodynamically viable toward analogous disproportionation. The lowest energy structures of the more highly unsaturated methylborole iron carbonyls (C(4)H(4)BCH(3))(2)Fe(2)(CO)(n) (n = 2, 1) have hydrogen atoms bridging an iron-carbon bond. In addition, the lowest energy (C(4)H(4)BCH(3))(2)Fe(2)(CO) structures are "slipped perpendicular" structures with bridging methylborole ligands, a terminal carbonyl group, and agostic CH(3)→Fe interactions involving the methyl hydrogens. Thus, in these highly unsaturated systems the methyl substituent in the methylborole ligand chosen in this work is not an "innocent bystander" but instead participates in the metal-ligand bonding.  相似文献   

15.
A dinucleating macrocycle, H(2)PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H(2)PIM with [Fe(2)(Mes)(4)] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph(3)CCO(2)H or Ar(Tol)CO(2)H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe(2)(PIM)(Ph(3)CCO(2))(2)] (1) and [Fe(2)(PIM)(Ar(Tol)CO(2))(2)] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multicomponent monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging μ-η(1)η(2) and μ-η(1)η(1) modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs ferrocene/ferrocenium, respectively. Treatment of 2 with silver perchlorate afforded a silver(I)/iron(III) heterodimetallic complex, [Fe(2)(μ-OH)(2)(ClO(4))(2)(PIM)(Ar(Tol)CO(2))Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a (μ-hydroxo)diiron(III) complex [Fe(2)(μ-OH)(PIM)(Ph(3)CCO(2))(3)] (4), a hexa(μ-hydroxo)tetrairon(III) complex [Fe(4)(μ-OH)(6)(PIM)(2)(Ph(3)CCO(2))(2)] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) compounds, a testimony to the role of the macrocylic ligand in preserving the dinuclear iron center under oxidizing conditions. X-ray crystallographic and (57)Fe M?ssbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of (μ-oxo)diiron(III) [Fe(2)(μ-O)(PIM)(Ar(Tol)CO(2))(2)] (6) and di(μ-hydroxo)diiron(III) [Fe(2)(μ-OH)(2)(PIM)(Ar(Tol)CO(2))(2)] (7) units in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe(4)(μ-OH)(6)(PIM)(2)(Ar(Tol)CO(2))(2)] (8), when treated with excess H(2)O.  相似文献   

16.
Wang H  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2006,45(26):10849-10858
The manganese carbonyl nitrosyls Mn(NO)(CO)4, Mn2(NO)2(CO)n (n = 7, 6, 5, 4), and Mn3(NO)3(CO)9 have been studied by density functional theory (DFT) using the B3LYP and BP86 methods for comparison of their predicted structures with those of isoelectronic iron carbonyl derivatives. DFT predicts a trigonal bipyramidal structure for Mn(NO)(CO)4 with an equatorial NO group very close to the experimental structure. The predicted lowest energy structure for Mn2(NO)2(CO)7 has two bridging NO groups in contrast to the known structure of the isoelectronic Fe2(CO)9, which has three bridging CO groups. The structures for the unsaturated binuclear Mn2(NO)2(CO)n (n = 6, 5, 4) derivatives are similar to those of the corresponding binuclear iron carbonyls Fe2(CO)n+2 derivatives but always with a preference of bridging NO groups over bridging CO groups. The trinuclear Mn3(NO)3(CO)9 is predicted to have a structure analogous to the known structure for Fe3(CO)12 but with two bridging NO groups rather than two bridging CO groups across one of the metal-metal edges of the M3 triangle. The dark red solid photolysis product of Mn(NO)(CO)4 characterized by its nu(CO) and nu(NO) frequencies approximately 45 years ago is suggested by these DFT studies not to be the originally assumed Mn2(NO)2(CO)7 analogous to Fe2(CO)9. Instead, this photolysis product appears to be Mn2(NO)2(CO)5 with a Mn(triple bond)Mn formal triple bond analogous to (eta5-C5H5)2V2(CO)5 obtained from the photolysis of (eta5-C5H5)V(CO)4.  相似文献   

17.
The dicyanodicarbonyliron(II) thiolate complexes trans,cis-[(CN)(2)(CO)(2)Fe(S,S-C-R)](-) (R = OEt (2), N(Et)(2) (3)) were prepared by the reaction of [Na][S-C(S)-R] and [Fe(CN)(2)(CO)(3)(Br)](-) (1). Complex 1 was obtained from oxidative addition of cyanogen bromide to [Fe(CN)(CO)(4)](-). In a similar fashion, reaction of complex 1 with [Na][S,O-C(5)H(4)N], and [Na][S,N-C(5)H(4)] produced the six-coordinate trans,cis-[(CN)(2)(CO)(2)Fe(S,O-C(5)H(4)N)](-) (6) and trans,cis-[(CN)(2)(CO)(2)Fe(S,N-C(5)H(4))](-) (7) individually. Photolysis of tetrahydrofuran (THF) solution of complexes 2, 3, and 7 under CO led to formation of the coordinatively unsaturated iron(II) dicyanocarbonyl thiolate compounds [(CN)(2)(CO)Fe(S,S-C-R)](-) (R = OEt (4), N(Et)(2) (5)) and [(CN)(2)(CO)Fe(S,N-C(5)H(4))](-) (8), respectively. The IR v(CN) stretching frequencies and patterns of complexes 4, 5, and 8 have unambiguously identified two CN(-) ligands occupying cis positions. In addition, density functional theory calculations suggest that the architecture of five-coordinate complexes 4, 5, and 8 with a vacant site trans to the CO ligand and two CN(-) ligands occupying cis positions serves as a conformational preference. Complexes 2, 3, and 7 were reobtained when the THF solution of complexes 4, 5, and 8 were exposed to CO atmosphere at 25 degrees C individually. Obviously, CO ligand can be reversibly bound to the Fe(II) site in these model compounds. Isotopic shift experiments demonstrated the lability of carbonyl ligands of complexes 2, 3, 4, 5, 7, and 8. Complexes [(CN)(2)(CO)Fe(S,S-C-R)](-) and NiA/NiC states [NiFe] hydrogenases from D. gigas exhibit a similar one-band pattern in the v(CO) region and two-band pattern in the v(CN) region individually, but in different positions, which may be accounted for by the distinct electronic effects between [S,S-C-R](-) and cysteine ligands. Also, the facile formations of five-coordinate complexes 4, 5, and 8 imply that the strong sigma-donor, weak pi-acceptor CN(-) ligands play a key role in creating/stabilizing five-coordinate iron(II) [(CN)(2)(CO)Fe(S,S-C-R)](-) complexes with a vacant coordination site trans to the CO ligand.  相似文献   

18.
The addition of the strongly pi-bonding ligands CO or tert-butyl isocyanide to the low-spin five-coordinate iron(II) nitrite species [Fe(TpivPP)(NO2)]- (TpivPP = picket fence porphyrin) gives two new six-coordinate species [Fe(TpivPP)(NO2)(CO)]- and [Fe(TpivPP)(NO2)(t-BuNC)]-. These species have been characterized by single-crystal structure determinations and by UV-vis, IR, and M?ssbauer spectroscopies. All evidence shows that in the mixed-ligand iron(II) porphyrin species, [Fe(TpivPP)(NO2)(CO)]-, the two trans, pi-accepting ligands CO and nitrite compete for pi density. The CO ligand however dominates the bonding. The Fe-N(NO2) bond lengths for the two independent anions in the unit cell at 2.006(4) and 2.009(4) A are lengthened compared to other nitrite species with either no trans ligands or non-pi-accepting trans ligands to nitrite. The Fe-C(CO) bond lengths are 1.782(4) A and 1.789(5) A for the two anions. The two Fe-C-O angles at 175.5(4) and 177.5(4) degrees are essentially linear in both anions. The quadrupole splitting for [Fe(TpivPP)(NO2)(CO)]- was determined to be 0.32 mm/s, and the isomer shift was 0.18 mm/s at room temperature in zero applied field. Both of the M?ssbauer parameters are much smaller than those found for six-coordinate low-spin iron(II) porphyrinates with neutral nitrogen-donating ligands as well as iron(II) nitro complexes. However, the M?ssbauer parameters are typical of other six-coordinate CO porphyrinates signifying that CO is the more dominant ligand. The CO stretching frequency of 1974 cm(-1) is shifted only slightly to higher energy compared to six-coordinate CO complexes with neutral nitrogen-donor ligands trans to CO. Crystal data for [K(222)][Fe(TpivPP)(NO2)(CO)].1/2C6H5Cl: monoclinic, space group P2(1)/c, Z = 8, a = 33.548(6) A, b = 18.8172(15) A, c = 27.187(2) A, beta = 95.240(7) degrees, V = 17091(4) A3.  相似文献   

19.
The equilibrium geometries, thermochemistry, and vibrational frequencies of the homoleptic binuclear rhenium carbonyls Re2(CO)n (n = 10, 9, 8, 7) were determined using the MPW1PW91 and BP86 methods from density functional theory (DFT) with the effective core potential basis sets LANL2DZ and SDD. In all cases triplet structures for Re2(CO)n were found to be unfavorable energetically relative to singlet structures, in contrast to corresponding Mn2(CO)n derivatives, apparently owing to the larger ligand field splitting of rhenium. For M2(CO)10 (M = Mn, Re) the unbridged structures (OC)5M-M(CO)5 are preferred energetically over structures with bridging CO groups. For M2(CO)9 (M = Mn, Re) the two low energy structures are (OC)4M(micro-CO)M(CO)4 with an M-M single bond and a four-electron donor bridging CO group and (OC)4M[double bond, length as m-dash]M(CO)5 with no bridging CO groups and an M[double bond, length as m-dash]M distance suggesting a double bond. The lowest energy structures for Re2(CO)8 have Re[triple bond, length as m-dash]Re distances in the range 2.6-2.7 A suggesting the triple bonds required to give the Re atoms the favored 18-electron configuration. Low energy structures for Re2(CO)7 are either of the type (OC)(4)M[triple bond, length as m-dash]M(CO)3 with short metal-metal distances suggesting triple bonds or have a single four-electron donor bridging CO group and longer M-M distances consistent with single or double bonds. The 18-electron rule thus appears to be violated in these highly unsaturated Re2(CO)7 structures.  相似文献   

20.
Wang H  Xie Y  King RB  Schaefer HF 《Inorganic chemistry》2006,45(14):5621-5629
The binuclear cyclopentadienylmetal nitrosyls and carbonyls Cp2M2(AO)n (A = N, M = Fe, Co, Ni; A = C, M = Ni; n = 2, 1) are studied by density functional theory using the B3LYP and BP86 functionals. In general, structures with bridging AO ligands are energetically preferred over those with terminal AO ligands. Thus, the global minima for Cp2M2(AO)2 are all found to have closely related axial dimetallocene structures with two symmetrically bridging AO ligands but variable planarity of the central M(mu-AO)2M units. Similarly, the single AO ligands in the global minima for Cp2M2(AO) are found to bridge symmetrically the pair of metal atoms. However, structures with terminal AO groups and a single bridging Cp ligand are also found at accessible energies for CpM2(NO)(mu-Cp) (M = Fe and Co) and CpNi2(CO)(mu-Cp). The metal-metal bond distances in Cp2M2(AO)n derivatives correlate reasonably well with the requirements of the 18-electron rule. In this connection, the unusual dimer Cp2Ni2(mu-NO)2 has a Ni-Ni bond distance suggestive of a single bond and geometry suggesting one one-electron donor bridging NO group and one three-electron donor bridging NO group. However, dissociation of Cp2Ni2(mu-NO)2 into the well-known stable monomer CpNiNO is highly favored energetically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号