首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 962 毫秒
1.
We have used oxygen plasma assisted MBE to grow epitaxial films of pyrolusite (β-MnO2) on TiO2(110) for thicknesses of one to six bilayers (BL). We define a bilayer to be a layer of Mn and lattice O and an adjacent layer of bridging O within the rutile structure. The resulting surfaces have been characterized in situ by reflection high-energy electron diffraction, low-energy electron diffraction, X-ray photoelectron spectroscopy and diffraction, and atomic force microscopy. Well-ordered, pseudomorphic overlayers form for substrate temperatures between 400 and 500°C. Mn–Ti intermixing occurs over the time scale of film growth (1 BL/min) for substrate temperatures in excess of 500°C. Films grown at 400–500°C exhibit island growth, whereas intermixed films grown at temperatures of 500–600°C are more laminar. 1 BL films grown at 450°C are more laminar than multilayer films grown at the same temperature, and form a well-ordered surface cation layer of Mn on the rutile structure with at most 10% indiffusion to the second cation layer.  相似文献   

2.
Tantalum oxide thin films were prepared by photo-assisted atomic layer deposition (Photo-ALD) in the substrate temperature range of 170–400 °C using Ta(OC2H5)5 and H2O as precursors. The constant growth rates of 0.42 and 0.47 Å per cycle were achieved for the films grown by normal ALD and Photo-ALD, respectively. The increased growth rate in Photo-ALD is probably due to the reactive surface by photon energy and faster surface reaction. In Photo-ALD, however, the constant growth rate started at lower temperature of 30 °C and one cycle time shortened up to 5.7 s than that of normal ALD. The films grown by normal ALD and Photo-ALD were amorphous and very smooth (0.21–0.35 nm) as examined by X-ray diffractometer and atomic force microscopy, respectively. Also, the refractive index was found to be 2.12–2.16 at the substrate temperature of 190–300 °C, similar to that of the film grown by normal ALD. However, the remarkably low leakage current density of 0.6×10−6 A/cm2 to 1×10−6 A/cm2 at applied field of 1 MV/cm is several order of magnitude smaller than that of normal ALD, probably due to the presence of reactive atom species.  相似文献   

3.
Silicon nanocrystals have been synthesized in SiO2 matrix using Si ion implantation. Si ions were implanted into 300-nm-thick SiO2 films grown on crystalline Si at energies of 30–55 keV, and with doses of 5×1015, 3×1016, and 1×1017 cm−2. Implanted samples were subsequently annealed in an N2 ambient at 500–1100°C during various periods. Photoluminescence spectra for the sample implanted with 1×1017 cm−2 at 55 keV show that red luminescence (750 nm) related to Si-nanocrystals clearly increases with annealing temperature and time in intensity, and that weak orange luminescence (600 nm) is observed after annealing at low temperatures of 500°C and 800°C. The luminescence around 600 nm becomes very intense when a thin SiO2 sample is implanted at a substrate temperature of 400°C with an energy of 30 keV and a low dose of 5×1015 cm−2. It vanishes after annealing at 800°C for 30 min. We conclude that this luminescence observed around 600 nm is caused by some radiative defects formed in Si-implanted SiO2.  相似文献   

4.
We report here on an X-ray absorption study of La0.7Sr0.3MnO3 films epitaxially grown on SrTiO3 substrate. The local organization around Mn in oriented films with 600 Å in thickness was investigated by polarized Extended X-ray Absorption Fine Structure. The angle between electric field vector and film surface was set equal to 5° and 70° to investigate almost independently the contribution of the manganese neighbors situated in and out of the film plane. The first neighboring shell oxygen is found to be the same in both geometries, but small changes in the next neighboring contribution are observed. These changes are associated with variation in the Mn–Mn bond length. A small in-plane elongation (3%) is observed in the constrained films with respect to the unconstrained case.  相似文献   

5.
We have investigated the growth mode and surface morphology of CaF2 film on Si(1 1 1)7×7 substrate by reflection high-energy electron diffraction (RHEED) using very weak electron beam and atomic force microscopy (AFM). It was found by RHEED intensity oscillation measurements and AFM observations that three-dimensional (3D) islands grow at RT; however, rather flat surface appears with two-dimensional (2D) islands around 300 °C. Especially, at high temperature of 700 °C, characteristic equilateral triangular terraces (or islands) with flat and wide shape grow with the tops directed toward [1 1 −2] of substrate Si(1 1 1). On the other hand, the desorption process of the CaF2 film due to electron stimulated desorption (ESD) was also examined. It was found that the ESD process at 300 °C forms characteristic equilateral triangular craters on the film surface with the tops (or corners) directed toward [−1 −1 2] of substrate Si(1 1 1), provided that the film was grown at 700 °C.  相似文献   

6.
Boehmite thin film with 50–100 nm surface flake structure has been synthesized on AISI 316 type austenitic stainless steel by immersing boehmite gel film into boiling water. When further coated with hydrolyzed (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (FAS), the boehmite film becomes superhydrophobic with a contact angle for water of 152°. The superhydrophobic property results from both the nanoscale surface flake structure and the low surface energy of the FAS top layer. The topography of such film was revealed by atomic force microscope (AFM) and a set of roughness parameters of such film was discussed. The degradation of superhydrophobicity of the surface was studied as a function of the heat-treatment temperatures. Below 600 °C, the surface remained to be superhydrophobic with the FAS top layer. Above 700 °C, the surface was not superhydrophobic anymore due to a gradual loss in surface roughness which was revealed by field emission scanning electron microscope (FESEM). A phase change from boehmite to γ-Al2O3 occurred during the heat-treatments from 700 to 900 °C which was studied by the selected area electron diffraction (SAED) patterns from the transmission electron microscope (TEM) measurement.  相似文献   

7.
In2S3 layers have been grown by close-spaced evaporation of pre-synthesized In2S3 powder from its constituent elements. The layers were deposited on glass substrates at temperatures in the range, 200–350 °C. The effect of substrate temperature on composition, structure, morphology, electrical and optical properties of the as-grown indium sulfide films has been studied. The synthesized powder exhibited cubic structure with a grain size of 63.92 nm and S/In ratio of 1.01. The films grown at 200 °C were amorphous in nature while its crystallinity increased with the increase of substrate temperature to 300 °C. The films exhibited pure tetragonal β-In2S3 phase at the substrate temperature of 350 °C. The surface morphological analysis revealed that the films grown at 300 °C had an average roughness of 1.43 nm. These films showed a S/In ratio of 0.98 and a lower electrical resistivity of 1.28 × 103 Ω cm. The optical band gap was found to be direct and the layers grown at 300 °C showed a higher optical transmittance of 78% and an energy band gap of 2.49 eV.  相似文献   

8.
Pure and rare earth doped gadolinium oxide (Gd2O3) waveguide films were prepared by a simple sol–gel process and dip-coating method. Gd2O3 was successfully synthesized by hydrolysis of gadolinium acetate. Thermogravimetric analysis (TGA) and differential thermal analysis (DTA) were used to study the thermal chemistry properties of dried gel. Structure of Gd2O3 films annealed at different temperature ranging from 400 to 750 °C were investigated by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that Gd2O3 starts crystallizing at about 400 °C and the crystallite size increases with annealing temperature. Oriented growth of (4 0 0) face of Gd2O3 has been observed when the films were deposited on (1 0 0) Si substrate and annealed at 750 °C. The laser beam (λ=632.8 nm) was coupled into the film by a prism coupler and propagation loss of the film measured by scattering-detection method is about 2 dB/cm. Luminescence properties of europium ions doped films were measured and are discussed.  相似文献   

9.
We have studied the influence of the hydrostatic pressure during annealing on the intensity of the visible photoluminescence (PL) from thermally grown SiO2 films irradiated with Si+ ions. Post-implantation anneals have been carried out in an Ar ambient at temperatures Ta of 400°C and 450°C for 10 h and 1130°C for 5 h at hydrostatic pressures of 1 bar–15 kbar. It has been found that the intensity of the 360, 460 and 600 nm PL peaks increases with rising hydrostatic pressure during low-temperature annealing. The intensity of the short-wavelength PL under conditions of hydrostatic pressure continues to rise even at Ta=1130°C. Increasing Ta leads to a shift in the PL spectra towards the ultraviolet range. The results obtained have been interpreted in terms of enhanced, pressure-mediated formation of ≡Si–Si≡ centres and small Si clusters within metastable regions of the ion-implanted SiO2.  相似文献   

10.
Deposition of Ni as contact on 4H–SiC has been investigated. Ni/4H–SiC samples were annealed at temperatures of 600, 800 and 950 °C for 30 min and were non-destructively characterized by soft X-ray emission spectroscopy (SXES) using synchrotron radiation as excitation. Si L2,3 SXE showed the formation of Ni2Si for all annealing temperatures. The C K SXE indicated the formation of graphite and graphitic carbons at annealing temperatures of 950 °C and below 800 °C, respectively.  相似文献   

11.
Deuterium and nitrogen depth profiles in Ti with modified surfaces have been measured with Auger electron spectroscopy, secondary ion mass spectroscopy, and D(3He,p)4He nuclear reaction analysis. Nitrogen-rich surfaces layers of varying thicknesses were created on Ti by exposure to N2 gas at 650°C. Deuterium loading was performed by exposure to 1 Torr of D2 gas at 500°C. The deuterium distribution was influenced by nitrogen in the near-surface regions of all samples. Specifically, deuterium solubility was suppressed in surface regions of high (greater than 1%) nitrogen concentration. The deuterium solubility also remained low within the first few microns, well beyond the region of high nitrogen concentration. This effect is attributed to internal elastic stresses imposed by the non-deuterium absorbing nitrogen-rich layer on the Ti. These stresses prohibit the volume expansion associated with deuterium absorption. We estimate stresses on the order of 3–4 GPa are required to suppress the deuterium solubility to the values observed. The deuterium absorption kinetics were observed to depend systematically on the thickness of the nitrogen-rich layer. This is consistent with limited solubility near the surface or a surface poisoning effect influencing the overall deuterium diffusion from the gas phase into the Ti bulk.  相似文献   

12.
Nd1.85Ce0.15CuO4−δ superconducting thin films were prepared on (1 0 0) SrTiO3 substrates by pulsed electron deposition technique without reducing atmosphere. Oxygen content is finely controlled by high temperature vacuum annealing, and optimal superconductivity has been obtained. The deposition conditions of the film are discussed in details. Higher deposition temperature and lower gas pressure result in the loss of copper and the appearance of the foreign phase Ce0.5Nd0.5O1.75. High quality Nd1.85Ce0.15CuO4−δ epitaxial films are deposited at 840–870 °C in the mixed gas with a ratio of O2:Ar = 1:3.  相似文献   

13.
The surface of 310 stainless steel (310SS) samples was investigated by X-ray photoelectron spectroscopy (XPS) after 500 h cyclic exposure to two carburizing atmospheres: CH4 (2%)–H2 (98%) at 800 °C, and CH4 (10%)–H2 (90%) at 1100 °C. The depth distribution of various elements in the surface region was obtained by XPS after successive cycles of argon etching. The microstructure of the alloy was observed by scanning electron microscopy (SEM) and the phases formed during the exposure were analyzed by X-ray diffraction (XRD). The results showed that the major phases that were formed within few micrometer depth during exposure at 800 °C include both iron and chromium carbides. (Mn, Cr) oxide was also formed as a result of the reaction with the residual oxygen of the atmosphere. A region of few microns width that was relatively depleted of chromium was formed under the surface as a result of the outwards diffusion of chromium. The exposure to the reducing atmosphere at 1100 °C led to the formation of various iron and chromium carbides. No oxide was formed during exposure. In all exposed samples, the surface was Cr enriched while nickel remained buried under the surface region that reacted with the atmosphere.  相似文献   

14.
[Fe(0.5 nm)/Pt(0.5 nm)]40, [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 multilayer were prepared by DC magnetron sputtering. By conventional furnace annealing (CA) at 270–600 °C for various time, all of the films still remained the disordered structure with the soft magnetic phase. By rapid thermal annealing (RTA) at 500 °C for various time, we obtained the [Fe(1 nm)/Pt(1.5 nm)]20 and [Fe(3 nm)/Pt(3 nm)]10 films with L12 ordered FePt3 phase which was almost ferromagnetic at room temperature. However, the [Fe(0.5 nm)/Pt(0.5 nm)]40 films was still disordered state even under RTA. Compared with CA, RTA exposed an outstanding effect on accelerating the phase transition when the film thickness is over [Fe(0.5 nm)/Pt(0.5 nm)]40.  相似文献   

15.
The thermal and native oxidation of CuGaSe2 thin films was studied by in situ X-ray photoelectron spectroscopy (XPS). The special design of the XPS chamber allowed to measure XP-spectra under oxidizing gas atmospheres at pressures of up to 5 mbar (in situ) or in ultra high vacuum (UHV). During thermal oxidation, the formation of predominantly Ga2O3 and some amount of SeO2 were observed, but no copper oxides could be detected in the near surface region of the thin films. The same oxides were found after native oxidation in air under ambient conditions. Only after long term native oxidation for longer than 4 months Cu(OH)2 was detected. An additional sodium oxide compound formed at the thin film surface, NaxO and Na2CO3 after thermal and native oxidation, respectively. The amount of these sodium oxide compounds depends on the Na content on the as prepared surface. The formation of SeO2 under humid conditions at 100 °C was found to depend on the surface composition of the thin film.  相似文献   

16.
Oxidation of heated diamond C(100):H surfaces   总被引:2,自引:0,他引:2  
This paper extends a previous study (Pehrsson and Mercer, submitted to Surf. Sci.) on unheated, hydrogenated, natural diamond (100) surfaces oxidized with thermally activated oxygen (O*2). In this paper, the oxidation is performed at substrate temperatures from Tsub=24 to 670°C. The diamond surface composition and structure were then investigated with high resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), electron loss spectroscopy (ELS) and low energy electron diffraction (LEED).

The oxygen coverage (θ) increased in two stages, as it did during oxidation at T<80°C. However, there are fundamental differences between the oxidation of nominally unheated and heated diamond surfaces. This difference is attributed to simultaneous adsorption and rapid desorption of oxygen species at higher temperatures; the desorption step is much slower without heating. The initial oxidation rates were similar regardless of the substrate temperatures, but the peak coverage (θ) was lower at higher temperatures. For example, θ plateaued at 0.4±0.1 ML at 600°C. The lower saturation coverage is again attributed to oxygen desorption during oxidation. Consistent results were obtained on fully oxidized surfaces, which when heated in vacuum to Tsub=600°C, lost 60% of their adsorbed oxygen. ELS revealed few C=C dimers on the oxidized surfaces, and more graphitization than on unheated surfaces. Oxidation at elevated temperatures also increased the carbonyl to ether ratio, reflecting etching-induced changes in the types of surface sites. The carbonyl and C–H stretch frequencies increased with oxygen dose due to formation of higher oxidation states and/or hydrogen bonding between adjacent groups. The oxygen types did not interconvert when the oxidized surfaces were heated in vacuum. Oxygen desorption generated a much more reactive surface than heating-induced dehydrogenation of the smooth, hydrogenated surface.  相似文献   


17.
The influence of oxide additives on the magnetic and structural properties of FePt L10 thin films has been studied. FePt films with HfO2 additive grown on a 5 nm MgO buffer showed a primarily random texture for both as-deposited and annealed samples. The average grain size was limited to 10 nm and the perpendicular coercivity was 1.3 kOe for a 10 nm thick FePt +20% HfO2 film annealed at 650°C for 10 min. In direct contrast, MnO additive neither limited grain size nor L10 ordering in annealed FePt films. A 10 nm thick FePt+20% MnO film grown on a 5 nm MgO buffer showed a unique discontinuous microstructure composed of clusters of (0 0 1) textured L10 grains after being annealed at 650°C for 10 min. The average size of the grains making up these clusters was 50 nm and the perpendicular coercivity of the film exceeded 7 kOe.  相似文献   

18.
Thin Ca films were evaporated on Si(1 1 1) under UHV conditions and subsequently annealed in the temperature range 200–650 °C. The interdiffusion of Ca and Si was examined by ex situ Auger depth profiling. In situ monitoring of the Si 2p core-level shift by X-ray photoemission spectroscopy (XPS) was employed to study the silicide formation process. The formation temperature of CaSi2 films on Si(1 1 1) was found to be about 350 °C. Epitaxial growth takes place at T≥400 °C. The morphology of the films, measured by atomic force microscopy (AFM), was correlated with their crystallinity as analyzed by X-ray diffraction (XRD). According to measurements of temperature-dependent IV characteristics and internal photoemission the Schottky-barrier height of CaSi2 on Si(1 1 1) amounts to qΦBn=0.25 eV on n-type and to qΦBp=0.82 eV on p-type silicon.  相似文献   

19.
LaAlO3 (LAO) is explored in this work to replace SiO2 as the gate dielectric material in metal–oxide–semiconductor field effect transistor. Amorphous LAO gate dielectric films were deposited on Si (0 0 1) substrates by low pressure metalorganic chemical vapor deposition using La(dpm)3 and Al(acac)3 sources. The effect of processing parameters such as deposition temperature and precursor vapor flux on growth, structure, morphology, and composition of LAO films has been investigated by various analytical methods deeply. The film growth mechanism on Si is reaction limiting instead of mass transport control. The reaction is thermally activated with activation energy of 37 kJ/mol. In the initial growth stage, Al element is deficient due to higher nucleation barrier on Si. The LAO films show a smooth surface and good thermal stability and remain amorphous up to a high temperature of 850 °C. The electrical properties of amorphous LAO ultrathin films on Si have also been evaluated, indicating LAO is suitable for high k gate dielectric applications.  相似文献   

20.
High-Tc superconducting thin films have been deposited in situ by means of a plasma assisted metal-organic chemical vapour deposition (PAMOCVD) process on LaAlO3. An EMCORE high-speed rotating disc reactor was used to deposit the films at a substrate temperature of 600°C to 800°C. The system is equipped with a (remote) 120 W microwave plasma generator. The oxidising plasma gas is N2O and/or O2 while Ar was used as the inert carrier gas for the different metal-organics. The influence of different process parameters (such as the temperatures of the metal-organics, substrate temperature, and plasma gas composition) on the superconductive properties and on the morphology of the films was investigated. Surface morphology and composition were studied by SEM/EDX or EPMA, and AC susceptibility measurements were used to investigate the superconductive properties (Tc and Jc). X-ray diffraction measurements indicated that single-phase YBa2Cu3O7−x films were epitaxially grown with the 00l orientation perpendicular to the substrate surface. The critical temperature (Tc) of the films is about 90 K and the critical current density (Jc) is higher than 106 A/cm2 at 77 K and zero field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号