首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
地热水样品经0.45μm水系微孔滤膜过滤,弃去初始的50~100 mL滤液,收集500mL地热水样品,然后加入适量50%(体积分数)硝酸溶液,使pH不大于2,采用电感耦合等离子体原子发射光谱法测定其中钾、钠、钙、镁的含量。选择钾、钠、钙、镁的分析谱线依次为766.490,589.592,317.933,285.213nm。采用背景扣除及样品稀释的方法校正背景和减小基体效应。4种元素的质量浓度在一定范围内与其对应的发射强度呈线性关系,方法的检出限为0.000 6~0.010 0mg·L^(-1)。对钾、钠、钙和镁的质量浓度分别为5,100,100,50mg·L^(-1)的混合标准溶液进行测定,钾、钠、钙和镁测定值的相对标准偏差(n=10)依次为0.43%,1.3%,0.43%,0.54%。方法应用于标准物质的分析,测定值与认定值相符。用标准加入法做方法的回收试验,测得回收率为99.6%~102%。实验室开展的比对试验结果表明:此法与传统方法测定结果基本吻合。  相似文献   

2.
0.500 0g柴油抗磨剂样品用10mL甲苯溶解,然后用甲苯定量至30g,采用电感耦合等离子体原子发射光谱法测定样品溶液中钠、钾、钙、镁、铁、钼、锌、磷、硼、硅、锡等11种微量元素。氧气流量为30mL·min~(-1),钠、钾、钙、镁、铁、钼、锌、磷、硼、硅、锡的分析谱线依次为588.957 0,766.444 0,393.386 0,279.512 1,259.913 0,202.016 7,213.815 8,214.915 7,249.713 5,251.613 4,189.917 7nm。在等离子体气体中加入氧气有效消除了积碳现象,以钇为内标元素。11种元素的线性范围均为0.05~10.0mg·L~(-1),检出限(3s)为0.001 2~0.086 1 mg·kg~(-1)。在1.000 mg·kg~(-1)浓度水平进行加标回收试验,回收率为95.7%~107%,测定值的相对标准偏差(n=6)为1.3%~4.7%。  相似文献   

3.
加热不燃烧卷烟(HNB)烟丝样品经干燥、搅碎和过筛后,分取0.1 g置于锥形瓶中,加入0.05 mol·L^(-1)盐酸溶液50 mL,超声提取20 min,离心。分取5 mL上清液,定容至50 mL,采用火焰原子吸收光谱法(FAAS)测定其中钙和钠含量;分取1 mL上清液,用水定容至100 mL,用FAAS测定其中钾和镁含量。结果显示,钾、钙、钠、镁的质量浓度均在一定范围内与其对应的吸光度呈线性关系,检出限(3s/k)分别为0.50,0.08,0.02,0.02 mg·kg^(-1);对实际样品进行6次平行测定和3个浓度水平的加标回收试验,测定值的相对标准偏差(n=6)均小于5.0%,回收率为90.0%~104%。方法用于5种分别用造纸法、稠浆法、辊压法和干法制备的HNB烟丝样品的分析,发现不同工艺所制样品中4种元素含量差别较大。  相似文献   

4.
建立电感耦合等离子体发射光谱法同时测定固体生物质燃料中钾、钠、钙、镁、砷、铜、铁、锰8种元素的含量。样品采用5 mL硝酸溶液和2 mL过氧化氢溶液进行微波消解,在选定的仪器工作条件下进行测定。钠、钙、镁、砷、铜、铁、锰的质量浓度在0~5.0 mg/L,钾的质量浓度在0~50.0 mg/L范围内与光谱强度具有良好的线性关系,相关系数均大于0.999,方法检出限为0.002~0.022 mg/L。样品的加标回收率为91.9%~108.2%,测定结果的相对标准偏差为2.1%~6.8%(n=6)。该方法简便、快速、高效且准确,适用于固体生物质燃料中钾、钠、钙、镁、砷、铜、铁、锰的测定。  相似文献   

5.
建立了微波消解-电感耦合等离子体质谱法(ICP-MS)同时测定铝土矿中锂、铬、铜、铁、钛、钾、钠、钙、镁、铅、锌等11种金属元素含量的方法。将铝土矿粉碎、研磨和干燥后,取0.1 g样品,加入3 mL硫酸、1 mL硝酸、2 mL氢氟酸和3 mL盐酸,按升温程序微波消解样品,加40 g·L~(-1)硼酸溶液10 mL,继续在120℃下消解10 min,使消解液变澄清。冷却后取出,180℃加热至近干,用1%(体积分数)硝酸溶液稀释,按照ICP-MS条件测定。通过用10 g·L~(-1)铝基体溶液配制混合标准溶液系列并加入内标元素Sc、Ge、Bi的方法来消除基体干扰,选择合适的待测元素同位素的方法来消除谱线重叠干扰。结果显示:11种元素的质量浓度均在一定范围内与其对应的响应值与内标元素响应值的比值呈线性关系,检出限(3s)为0.011~1.400 mg·kg~(-1)。对实际样品进行加标回收试验,测定值为0.13~72.21 mg·L~(-1),测定值的相对标准偏差(n=6)为0.69%~2.6%,回收率为94.0%~106%;此方法用于分析3种铝土矿成分分析标准物质GBW 07177、GBW 07179、GBW 07180,所得测定值均在认定值要求的范围内。  相似文献   

6.
采用硝酸–高氯酸湿法消解或硝酸–双氧水微波消解植物样品,以电感耦合等离子体原子发射光谱法同时测定样品溶液中钾、钠、钙和镁含量。用该法测定灌木枝叶和茶叶标准样品,测定值均在标准值范围内,测定结果的相对标准偏差为0.45%~4.05%(n=8)。钾、钠、钙、镁的加标回收率分别为94.4%~107.6%,92.6%~107.9%,93.7%~105.4%,92.9%~107.2%。该方法操作简便,测量精密度和准确度完全满足植物中钾、钠、钙和镁含量的测定要求。  相似文献   

7.
采用电感耦合等离子体原子发射光谱法测定了枸杞中锌、铅、锰、铁、铬、镁、钙、铜、钠、钾和镉11种元素含量。选择硝酸(2+98)溶液作为介质,选择波长为213.86,220.35,257.61,259.94,267.72,279.08,324.75,317.93,589.59,766.49,226.50 nm 11条谱线依次作为测定锌、铅、锰、铁、铬、镁、钙、铜、钠、钾和镉的分析线,测得11种元素的检出限(3δ)均低于0.07 mg·L~(-1),相对标准偏差(n=11)在0.72%~2.40%之间。比较了常规湿法消化法、高压消化罐法和微波消解法处理样品对测定结果的影响。研究表明,高压消化罐法和微波消解处理样品精密度好。  相似文献   

8.
采用火焰原子吸收光谱法测定了乳酸菌发酵虾壳液中钙量。钙的质量浓度在24.0mg·L~(-1)范围以内与对应的吸光度呈线性关系,检出限(3s)为0.065mg·L~(-1)。在含钙10.67mg·L~(-1)试样溶液中加入10.00mg·L~(-1)钙标准溶液后按试验方法测定,根据测定值算得平均回收率为101.2%。为考查方法的精密度,对含钙1.33%(质量分数,下同)的样品作重复测定,求得测定值的相对标准偏差(n=6)为0.37%,并用EDTA滴定法对同一样品中钙量进行对比测定,测得其平均值(1.39%)与已知值基本相符。EDTA滴定法测定值的相对标准偏差(n=6)为0.59%。还证明了样品中存在的有机物对火焰原子吸收光谱法测定钙未造成干扰。  相似文献   

9.
0.100 0g焦炭灰样品经氢氟酸-硝酸(1+3)溶液8mL消解,用火焰原子吸收光谱法测定其中钾和钠的含量。钾和钠的质量浓度分别在4mg.L-1及2mg.L-1以内与其吸光度呈线性关系,检出限(3σ)分别为12μg.L-1及6μg.L-1。方法用于分析焦炭灰标准物质,测定值与认定值相符,钾和钠的相对标准偏差(n=11)依次在2.7%~3.8%和1.3%~3.1%之间。  相似文献   

10.
采用高温水解-离子色谱法测定氮化硅中氟和氯的含量。氮化硅样品经1 050℃高温水解,氢氧化钠溶液吸收挥发性氟化物和氯化物,使待测元素以相应阴离子形式存在。以8.0mmol·L~(-1)碳酸钠-1.0mmol·L~(-1)碳酸氢钠混合液为淋洗液,抑制型电导检测器测定。F~-和Cl~-的线性范围依次为0.10~1.00mg·L~(-1),1.00~10.00mg·L~(-1),检出限(3σ)依次为0.017,0.026mg·L~(-1)。方法应用于氮化硅样品的分析,测定值与能量散射X射线荧光法测定结果相符,测定值的相对标准偏差(n=7)小于4.0%。用标准加入法进行回收试验,测得回收率在84.5%~106%之间。  相似文献   

11.
采用自制四氧化三锰纳米粒子固相萃取-电感耦合等离子体质谱法测定蔬菜中铅和铜的含量。优化的固相萃取条件如下:(1)样品溶液的pH为4.0;(2)样品溶液的流量为1.0mL·min~(-1);(3)四氧化三锰纳米粒子的用量为50mg;(4)洗脱剂为3mol·L~(-1)盐酸溶液,用量为2mL;(5)样品溶液的体积为20mL。铅和铜的线性范围依次为0.01~5.0,0.02~1.0μg·L~(-1),检出限(3s/k)依次为4,8ng·L~(-1)。加标回收率为80.0%~108%,测定值的相对标准偏差(n=7)为0.94%~3.2%。  相似文献   

12.
建立钙、镁、铁、铝离子对离子选择电极法检测土壤总氟化物干扰的消除方法。通过对含不同浓度水平钙、镁、铁、铝离子的土壤样品中总氟化物进行测试,明确了在总离子强度调节缓冲溶液共存下钙、镁、铁、铝离子对土壤提取液中总氟化物检测结果存在负干扰。通过测试10种土壤样品总氟化物提取液中干扰最强的背景铝含量,对其中土壤提取液中铝离子质量浓度大于10.0 mg/L的3种土壤样品进行加标回收试验,结果表明了土壤总氟化物含量为327~926 mg/kg范围内,当样品提取液中的铝离子含量为50~100 mg/L时,通过减少提取液取样体积为5.00 mL并增加柠檬酸三钠总离子强度缓冲溶液体积至15.0 mL的方法可将加标回收率由56.4%~78.3%优化至94.7%~104.0%;当加入Ca~(2+),Mg~(2+),Fe~(3+)质量浓度为200~300 mg/L,加标回收率由63.1%~77.6%优化为92.4%~105.0%。用优化后的方法测定土壤总氟化物含量为246~2 240 mg/kg的5种标准样品,测试结果与标准值一致。该方法能有效地消除土壤样品总氟化物测定中含钙、镁、铁离子质量浓度为200~300 mg/L,铝离子质量浓度为50~100 mg/L而产生的干扰,具有良好的适用性。  相似文献   

13.
汽车尾气净化催化剂样品(0.5g),用3%(体积分数)氨水溶液(30mL)超声提取。所得提取液中的Cl-和NO_3~-用IonPac AS11-HC(4mm×250mm)作为分离柱,以17mmol·L~(-1)氢氧化钾溶液为淋洗液进行色谱分离,用抑制型电导检测器测定。Cl-和NO_3~-的质量浓度均在0.1~10.0 mg·L~(-1)内与其对应的峰高呈线性关系,Cl~-和NO_3~-的检出限依次为0.004,0.019mg·L~(-1)。方法用于实际样品分析,并进行加标回收试验,测得回收率在98.8%~116%之间,测定值的相对标准偏差(n=7)不大于2.0%。  相似文献   

14.
建立了电感耦合等离子体原子发射光谱法(ICP-AES)测定白云鄂博富钾板岩中Fe、Ca、Mg、Al、Ba含量的方法。将0.3 g富钾板岩样品置于镍坩埚中,用2.0 g氢氧化钠和2.0 g过氧化钠于750℃熔解,再加入20 mL盐酸进行酸化,采用ICP-AES测定其中Fe、Ca、Mg、Al、Ba的含量。Fe、Ca、Mg、Al、Ba的最佳分析谱线分别为259.940,396.847,279.553,396.152,493.408 nm。结果表明,Fe、Ca、Mg、Al、Ba的质量浓度在一定范围内与其对应的发射强度呈线性关系,检出限(3s)依次为0.016,0.015,0.002 4,0.016,0.014 mg·L~(-1)。按上述方法测定钾长石标准物质(GBW 03116)和富钾板岩样品中Fe、Ca、Mg、Al、Ba的含量,测定值的相对标准偏差(n=11)为0.45%~7.0%,标准物质的测定值与认定值相符。按标准加入法进行回收试验,回收率为95.2%~100%。  相似文献   

15.
Bi~(3+)与Mo(Ⅵ)和PO_4~(3-)在硫酸介质中反应生成黄色的磷铋钼杂多酸,然后被L-抗坏血酸还原为磷铋钼蓝,据此建立了分光光度法测定水果、蔬菜及饮料中L-抗坏血酸的方法。优化的试验条件如下:(1)测定波长为710nm;(2)1.95×10~(-2) mol·L~(-1)磷酸二氢钾溶液的用量为3.0mL;(3)6.51×10~(-2) mol·L~(-1)钼酸铵溶液的用量为4.0 mL;(4)2.06×10~(-4) mol·L~(-1)硝酸铋溶液的用量为1mL;(5)硫酸的浓度为0.16mol·L~(-1);(6)反应温度为室温。L-抗坏血酸的质量浓度在4~120mg·L~(-1)内与其对应的吸光度呈线性关系,表观摩尔吸光率为3.59×10~3L·mol~(-1)·cm~(-1),检出限(3s/k)为0.2 mg·L~(-1)。方法用于水果、蔬菜及饮料样品的分析,加标回收率为98.0%~102%,测定值的相对标准偏差(n=11)为1.1%~2.3%。  相似文献   

16.
基于在硫酸介质中二氧化硫对溴酸钾氧化亚甲基蓝(MB)褪色具有抑制作用,建立了抑制褪色光度法快速测定啤酒中微量二氧化硫的方法。在25mL比色管中依次加入1mol·L~(-1)硫酸溶液、2×10~(-4) mol·L~(-1) MB溶液、0.1mol·L~(-1)溴酸钾溶液和经氢氧化钠和硫酸处理好的样品溶液,于50℃水浴中加热3.0min,在660nm处测量该体系的吸光度A及空白样品体系的吸光度A_0,计算吸光度差值ΔA(ΔA=A-A_0)。结果显示,二氧化硫的质量浓度在0.04~0.4mg·L~(-1)内与ΔA呈线性关系,检出限(3s/k)为0.001mg·L~(-1)。对实际样品进行加标回收试验,回收率为96.5%~101%,测定值的相对标准偏差(n=11)为1.8%~2.8%。用该方法分析熟啤和生啤,将得到的测定值与国家标准方法 GB 5009.34-2016的进行了比对,相对误差为-1.5%~2.0%。  相似文献   

17.
目前测定降水中钾、钠、钙、镁的常用方法主要有火焰原子吸收法、火焰原子发射法和离子色谱法[1]。用火焰原子吸收法测定钾、钠易产生较大的电离干扰,需加入消电离剂,测定钙、镁需加入释放剂,两法操作都较繁琐。对于钾钠浓度大于0.5mg/L的样品在不稀释的情况下必须降低仪器的灵  相似文献   

18.
用高效毛细管电泳法,在pH 5.5的缓冲介质中用酒石酸作为络合剂,使血浆中钾、钠、钙、镁4种阳离子达到很好分离,用咪唑作为背景试剂进行了紫外检测.对电泳分离及紫外检测的各分析条件(包括背景缓冲溶液的pH值,咪唑溶液的浓度及酒石酸溶液的浓度等)作了试验并予以优化,上述4种离子的相互分离在4.5 min内顺利完成.文中给出了K 、Ca 、Mg2 的线性回归方程,其相关系数在0.998 4~0.999 4之间,证明了在各离子的峰面积与其浓度之间呈线性关系,3种离子的检出限(S/N=3)依次为0.20,0.12,0.06 mg·L-1.用迁移时间检测和用峰面积检测所得的RSD值(n=6)依次小于0.76%和2.83%.由于钠离子的吸收峰与系统峰重叠,钠的测定无法进行.回收率试验的结果在95.3%至104.2%.  相似文献   

19.
当样品中硅的质量分数不大于2%时,采用盐酸(1+1)溶液10mL和数滴过氧化氢溶解0.100 0g样品;当样品中硅的质量分数大于2%时,先用200g·L~(-1)氢氧化钠溶液10mL溶解0.100 0g样品,加入盐酸(1+1)溶液15 mL酸化。以La 408.671nm,Ce 413.765nm,Sc 361.384nm作为分析线,采用基体匹配法来消除铝基体干扰。镧、铈、钪的线性范围为1.0~10.0mg·L~(-1),检出限(3s)分别为3.5,6.1,3.1μg·L~(-1)。应用该方法分析了镧、铈、钪质量分数在0.005 0%~0.500%内的铝合金样品,镧、铈、钪测定值之和与三溴偶氮胂分光光度法测得稀土元素总量相符。测定值的相对标准偏差(n=11)均小于6.0%。  相似文献   

20.
提出了超级微波消解-电感耦合等离子体原子发射光谱法(ICP-AES)同时测定特种工程塑料如芳香聚砜(PSF)、聚醚醚酮(PEEK)、聚苯硫醚(PPS)中铝、砷、钙、镉、汞、钡、钴、铬、铜、铁、钾、镁、锰、钠、镍、磷、铅、硅、锡、硒、锑、钛、钒、锌等24种元素含量的方法。取0.100 g样品,依次加入5.0 mL硝酸、0.5 mL高氯酸和1.0 mL氢氟酸,使用超级微波消解仪,预加压力4 MPa,按温度程序(最终温度280℃,保持50 min)消解样品,冷却后取出消解液,用水定容至50 mL,采用ICP-AES测定其中24种元素的含量。结果表明:24种元素的质量浓度均在0.020~1.000 mg·L-1内与其对应的信号强度呈线性关系,检出限(3s)为0.130~5.92 mg·kg-1。按照标准加入法进行回收试验,回收率为90.7%~110%,测定值的相对标准偏差(n=6)均小于4.0%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号