首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The operation of a micro-optical beam splitter for surface plasmon polaritons (SPP’s) formed by lined up scatterers is modeled and studied in the framework of a vectorial dipolar approach for multiple SPP scattering by equivalent non-spherical nanoparticles. It is shown that the inclusion of anisotropic polarizability of individual scatterer in the vectorial dipolar model of multiple SPP scattering allows one to obtain, in some cases, quantitative agreement between modeling and experimental results. As an example, we apply this approach to model an SPP beam-splitter formed by a chain of spheroidal particles. The dependencies of the splitting efficiency on the shape of particles, the incidence angle and the waist of an incident SPP Gaussian beam are considered. It is found that the efficiency is very sensitive to the shape of scatterers and the angle of SPP beam incidence. Comparison of numerical results with experimental data shows good agreement with respect to the particle shape and incident angular dependences. PACS 02.70.-c; 71.36.+c; 78.68.+m  相似文献   

2.
Scattering and splitting of surface plasmon polaritons (SPPs) by a chain of strongly interacting nanoparticles located near a metal surface are numerically studied. The applied numerical model is based on the Green’s function formalism and point–dipole approximation for scattering by nanoparticles. Dependencies of the splitting efficiency on the inter-particle distance in the chain and on the angle of incidence of the SPP Gaussian beam are considered. It is found that the splitting efficiency depends on the inter-particle distances especially when the angle between the SPP beam and the chain is relatively small. The role of multiple scattering in the SPP splitting by the chains of nanoparticles is also discussed.  相似文献   

3.
The acoustic properties of anechoic layers with a singly periodic array of cylindrical scatterers are investigated. A method combined plane wave expansion and finite element analysis is extended for out-of-plane incidence. The reflection characteristics of the anechoic layers with cavities and locally resonant scatterers are discussed. The backing is a steel plate followed by an air half space. Under this approximate zero transmission backing condition, the reflection reduction is induced by the absorption enhancement. The absorption mechanism is explained by the scattering/absorption cross section of the isolated scatterer. Three types of resonant modes which can induce efficient absorption are revealed. Due to the fact that the frequencies of the resonant modes are related to the size of the scatterers, anechoic layers with scatterers of mixed size can broaden the absorption band. A genetic optimization algorithm is adopted to design the anechoic layer with scatterers of mixed size at a desired frequency band from 2 kHz to l0 kHz for normal incidence, and the influence of the incident angle is also discussed.  相似文献   

4.
The scattering process of an unpolarized Bessel beam through spherical scatterers is investigated. We derive the analytical solutions of scattered fields of x-and y-polarized Bessel beams using a sphere, after which the dimensionless scattering function for an unpolarized Bessel beam is obtained. The dimensionless scattering function is applicable to spherical scatterers of any size on the beam axis or near it. Through numerical simulations, we demonstrate that extreme points exist in the direction or neighboring direction of the conical angle for spherical scatterers on the beam axis, whereas the existence of extreme points depends on the ratio between the spherical scatterers size and central spot size of the Bessel beam.  相似文献   

5.
Waveguiding in surface plasmon polariton band gap structures   总被引:3,自引:0,他引:3  
Using near-field optical microscopy, we investigate propagation and scattering of surface plasmon polaritons (SPP's) excited in the wavelength range of 780-820 nm at nanostructured gold-film surfaces with areas of 200-nm-wide scatterers arranged in a 400-nm-period triangular lattice containing line defects. We observe the SPP reflection by such an area and SPP guiding along line defects at 782 nm, as well as significant deterioration of these effects is 815 nm, thereby directly demonstrating the SPP band gap effect and showing first examples of SPP channel waveguides in surface band gap structures.  相似文献   

6.
中红外散射的基质折射率效应研究   总被引:2,自引:0,他引:2  
本文利用Mie散射理论对中红外波段三种不同类型散射体的散射和消光进行了研究,发现基质在三种不同类型散射体的散射和消光中所起作用完全不同。对于无吸收的高折射率散射体,基质折射率越大面积散射比(或面积消光比)越低;对于反常色散散射体,基质折射率越大面积散射比和面积肖光比越高;而对于金属散射体,基质折射率的大小对于散射和消光影响极小。  相似文献   

7.
Intralipid suspensions behave like phantoms of human tissues concerning their light scattering properties. We present experimental measurements of the angular distribution of polarized light scattering at various incidence angles on Intralipid-20%. A comparison of the absolute values of these measurements with simulations using a vector radiative transfer model (N-flux) developed for multilayered media demonstrates a stratified structure of the samples with a double distribution of the size of scatterers. This result is confirmed by polarimetry imaging.  相似文献   

8.
The Mueller matrix solution of the vector radiative transfer equation with time dependence is derived in this paper. It is applied to simulation of polarimetric bistatic scattering from a layer of non-uniformly oriented, random non-spherical scatterers when a Gaussian plane pulse is incident upon. Co-polarized and cross-polarized bistatic scattering are numerically calculated. The pulse echoes are compared with the incidence, and demonstrate its functional dependence on the physical parameters of random medium, such as spatial orientation and fractional volume of scatterers, incidence angle and polarization, the layer depth and others.  相似文献   

9.
The reflection of ultrasound from partially contacting rough surfaces   总被引:1,自引:0,他引:1  
Ultrasound is commonly used to detect and size cracks in a range of engineering components. Modeling techniques are well established for smooth and open cracks. However, real cracks are often rough (relative to the ultrasonic wavelength) and closed due to compressive stress. This paper describes an investigation into the combined effects of crack face roughness and closure on ultrasonic detectability. A contact model has been used to estimate the size and shape of scatterers (voids) at the interface of these rough surfaces when loaded. The response of such interfaces to excitation with a longitudinal ultrasonic pulse over a wide range of frequencies has been investigated. The interaction of ultrasound with this scattering interface is predicted using a finite-element model and good agreement with experiments on rough surfaces is shown. Results are shown for arrays of equi-sized scatterers and a distribution of scatterer sizes. It is shown that the response at high frequencies is dependent on the size, shape, and distribution of the scatterers. It is also shown that the finite-element results depart from the mass-spring model predictions when the product of wave number and scatterer half-width is greater than 0.4.  相似文献   

10.
We propose to use channels in strongly scattering nonabsorbing random media for guiding electromagnetic waves, and demonstrate this concept using near-field microscopy of surface plasmon polaritons (SPP's) propagating along the gold film surface covered with randomly located scatterers. In the wavelength range of 725-765 nm, we observe complete inhibition of the SPP propagation inside the random structures composed of approximately 50-nm-wide gold bumps and their clusters with the density of 50 microm(-2), as well as well-defined SPP guiding along corrugation-free 2- and 4-microm-wide channels.  相似文献   

11.
The interaction of scatterers under steady-state acoustic irradiation is studied for the case of scatterers in the form of elliptic cylinders taken as an example. The angular scattering characteristics of two interacting cylinders are calculated and compared with the angular characteristics of a single cylinder in a wide frequency band and in a wide angular range of irradiation. The parameters of interacting bodies (the angle of irradiation, the size with respect to the wavelength, and the distance between the bodies) at which the interaction is negligibly small are determined.  相似文献   

12.
The dependence of the intensity of light backscattered from a layer of a randomly inhomogeneous medium on the polarization of incident light and the size of scatterers has been investigated. The results of numerical simulation have demonstrated that the direction of rotation of the plane of polarization is different in systems with small- and large-scale inhomogeneities. It is shown for the first time that the dependence of the sign of the residual circular polarization on the size of scatterers can be observed in systems described by the Henyey-Greenstein phase function used in simulating biological tissues. A similar anomalous polarization effect, which consists in changing the direction of rotation of the plane of polarization of backscattered light with an increase in the scattering angle, is revealed in studying the coherent backscattering component. These polarization effects are observed in light backscattering from optically active media.  相似文献   

13.
随机非球形粒子全极化散射的时间相关Mueller矩阵解   总被引:2,自引:0,他引:2       下载免费PDF全文
常梅  金亚秋 《物理学报》2002,51(1):74-83
从与时间相关的矢量辐射传输方程推导一阶Mueller矩阵解,用来模拟Gauss型平面脉冲波入射下,一层随机、非均匀取向非球形粒子的全极化双站散射.数值计算了同极化和去极化脉冲响应,与入射脉冲进行了比较,说明了随机介质的物理参数,如粒子的取向和占空比、入射角、极化以及层厚等对脉冲响应的影响 关键词: 平面脉冲波 非球形粒子 Mueller矩阵  相似文献   

14.
The problem of light scattering from an anisotropic layer with a spherically symmetric distribution of the optical axis is solved exactly. The dependence of the scattering efficiency on the particle size, the anisotropy parameter, and the layer thickness is studied numerically for various anisotropy types. It is shown that the scattering cross section is strongly affected by the type of anisotropy and that the presence of disclinations increases the scattering efficiency. As an additional effect specific to anisotropic scatterers, it is found that, in the case of configurations with broken central symmetry, the scattering amplitudes contain a phase shift that scales logarithmically with the thickness of the anisotropic layer.  相似文献   

15.
Gaussian beams provide a useful insonifying field for surface or interface scattering problems such as encountered in electromagnetics, acoustics and seismology. Gaussian beams have these advantages: (i) They give a finite size for the scattering region on the interface. (ii) The incident energy is restricted to a small range of grazing angles. (iii) They do not have side lobes. (iv) They have a convenient mathematical expression. The major disadvantages are: (i) Insonification of an interface is nonuniform. The scattered field will depend on the location of the scatterers within the beam. (ii) The beams spread, so that propagation becomes an integral component of the scattering problem. A standard beam parameterization is proposed which keeps propagation effects uniform among various models so that the effects of scattering only can be compared. In continuous wave problems, for a given angle of incidence and incident amplitude threshold, there will be an optimum Gaussian beam which keeps the insonified area as small as possible. For numerical solutions of pulse beams, these standard parameters provide an estimate of the smallest truncated domain necessary for a physically meaningful result.  相似文献   

16.
The spatiotemporal focusing of surface plasmon polariton (SPP) wave packets (WPs) by planar plasmonic‐lens coupling structures is described using combined femtosecond interferometric time‐resolved photoemission electron microscopy (ITR‐PEEM) imaging and model simulations. The focusing properties of lens structures inscribed lithographically into Ag films depend on the angle of incidence of the excitation field. Severe aberrations are introduced by the phase delay in the interaction of obliquely incident plane waves with the commonly employed circular arc‐shaped lens structures. It is shown that the aberration can be corrected by accounting for propagation delays caused by the incidence angle‐dependent retardation of the optical field‐lens structure interaction. The focusing of SPP‐WPs in both space and time is demonstrated with aberration corrected lens structures.  相似文献   

17.
We present an efficient approach to compute the second-order scattering of an electromagnetic wave by two discrete scatterers in proximity to each other. Such a two-body system represents the simplest canonical arrangement to address near-field volume scattering phenomena in microwave remote sensing models of vegetation. Using an analytical wave-based approach, a successive scattering methodology is employed to derive the first interaction term in multiple scattering by two arbitrary scatterers in terms of their transition operators. The general formulation is applied to find the second-order bistatic scattering amplitude for a pair of finite length thin cylinders at arbitrary interaction distances using the exact Green's function. To improve computational efficiency, the solution is then specialized to the Fresnel region. These second-order bistatic scattering amplitude results are in agreement with the exact Green's function model when the scatterers are in the Fresnel region of each other. Additionally, it is demonstrated that using the far field approximation in the Fresnel region can yield significant deviations from the exact results. The Fresnel model, unlike the far field approximation, accurately predicts the scattering amplitude peak values and null locations, and is suited to fast solutions in realistic canopy simulations.  相似文献   

18.
Novel Monte Carlo techniques are described for the computation of reflection coefficient matrices for multiple scattering of light in plane-parallel random media of spherical scatterers. The present multiple scattering theory is composed of coherent backscattering and radiative transfer. In the radiative transfer part, the Stokes parameters of light escaping from the medium are updated at each scattering process in predefined angles of emergence. The scattering directions at each process are randomized using probability densities for the polar and azimuthal scattering angles: the former angle is generated using the single-scattering phase function, whereafter the latter follows from Kepler's equation. For spherical scatterers in the Rayleigh regime, randomization proceeds semi-analytically whereas, beyond that regime, cubic spline presentation of the scattering matrix is used for numerical computations. In the coherent backscattering part, the reciprocity of electromagnetic waves in the backscattering direction allows the renormalization of the reversely propagating waves, whereafter the scattering characteristics are computed in other directions. High orders of scattering (~10 000) can be treated because of the peculiar polarization characteristics of the reverse wave: after a number of scatterings, the polarization state of the reverse wave becomes independent of that of the incident wave, that is, it becomes fully dictated by the scatterings at the end of the reverse path. The coherent backscattering part depends on the single-scattering albedo in a non-monotonous way, the most pronounced signatures showing up for absorbing scatterers. The numerical results compare favourably to the literature results for nonabsorbing spherical scatterers both in and beyond the Rayleigh regime.  相似文献   

19.
Recent research has shown that coupling between point scatterers in a disordered medium by longitudinal electromagnetic fields is harmful for Anderson localization of light. However, it has been unclear if this feature is generic or specific for point scatterers. The present work demonstrates that the intensity of longitudinal field outside a spherical dielectric scatterer illuminated by monochromatic light exhibits a complicated, nonmonotonous dependence on the scatterer size. Moreover, the intensity is reduced for a hollow sphere, whereas one can adjust the parameters of a coated sphere to obtain a relatively low longitudinal field together with a strong resonant scattering efficiency. Therefore, random arrangements of structured (hollow or coated) spheres may be promising three‐dimensional disordered materials for reaching Anderson localization of light.  相似文献   

20.
A polydisperse sphere model with the complex refractive index is employed to describe the propagation of light in biological tissue. The scattering coefficient, absorption coefficient and scattering phase function are calculated. At the same time, the inverse problem on retrieving the particles size distribution, imaginary part of the refractive index and number density of scatterers is investigated. The result shows that the retrieval scheme together with the Chahine algorithm is effective in dealing with such an inverse problem. It is also clarified that a group of parameters including the scattering coefficient, absorption coefficient and phase function are associated with another group including the refractive index, particle size distribution and number density of scatterers, which is a problem described in two different ways and the anisotropy factor is not an independent variable, but is determined by the phase function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号