首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The temperature-dependency of the separation of fullerenes in liquid chromatography (LC) has been examined using various alkyl bonded stationary phases. It has been found that a maximum retention temperature exists with long alkyl bonded stationary phases, whereas there is no similar effect with the newly synthesized alkyl bonded phases which have two phenyl groups at the base of the bonded phase. The interpretation of the retention behavior of fullerenes in the low temperature region on alkyl bonded stationary phases is discussed using information obtained by CP-MAS solid-state NMR spectroscopy and LC.  相似文献   

2.
The influence of the mobile phase composition and column temperature on the chromatographic separation of five buckminsterfullerenes (C60, C70, C76, C78, C84) on a stationary phase based on silica gel with chemically bonded humic acid (Bonded humic acid column (BHAC)) was studied. The retention behavior of the fullerenes was measured under isocratic conditions with different mobile phase compositions, ranging from 0.05-0.70 (v/v) of toluene in cyclohexane. The column temperature was analysed in the range 35-75 °C. The retention factors of the five fullerenes do not depend linearly on the toluene fraction but follow a quadratic relationship. The best chromatographic conditions for baseline separation of the five fullerenes were selected. The retention of the fullerenes on the HA stationary phase was strongly affected by temperature. Positive values of thermodynamic parameters (changes of enthalpy and entropy) were due to the abnormal solubility behaviour of fullerenes in toluene in the temperature range 35-75 °C. The information obtained in this work makes this BHAC very simple to prepare and low cost, useful for fullerene research applications.  相似文献   

3.
A chemically bonded C60 silica phase was synthesized as a stationary phase for liquid chromatography (LC) and its retention behavior evaluated for various polycyclic aromatic hydrocarbons (PAHs) using microcolumn LC. The results indicate that the C60 bonded phase offers selectivity different from that of octadecylsilica (ODS) bonded phases in the separation of isomeric PAHs. With the C60 phase, PAH molecules having a partial structure similar to that of the C60 molecule, e.g. triphenylene and perylene, were retained longer than with ordinary ODS stationary phases. The results also show that good correlation exists between the retention data with this C60 bonded phase and with C60 itself as the stationary phase.  相似文献   

4.
余琼卫  施治国  冯钰锜  达世禄  李烃 《色谱》2005,23(4):384-388
制备了用于分离C60和C70的2,4,6-三硝基苯酚改性锆镁复合氧化物高效液相色谱固定相,并用元素分析仪、红外光谱仪和比表面积分析仪等对其进行了表征。考察了流动相中甲苯含量和柱温对C60和C70分离的影响。同时考察了以甲苯为流动相,在348 K的柱温下,该固定相分离富勒烯混合物(含3%高富勒烯)的情况。结果表明,2,4,6-三硝基苯酚改性锆镁复合氧化物固定相对富勒烯有较强的保留,并表现出较强的温度关系,提高柱温能提高固定相对富勒烯的分离能力,并具有用于富勒烯制备分离的潜力。  相似文献   

5.
Chemical bonding reaction and immobilization through low energy radiation (heating) have been investigated to fix a side-chain liquid crystalline polymer (SC-LCP) on silica particles in order to use the resulting modified silica in normal-phase HPLC. Highly stable chromatographic stationary phases are observed under excellent polymer solvent flow conditions (THF) for both methods and better column efficiencies are also exhibited towards PAHs' separation compared to the classical coated stationary phase. The characterization of these new stationary phases and the rationale for improved column stability have been investigated by solid state 13C and 29Si CP/MAS NMR spectroscopy. It is clearly shown that the chemical bonding is achieved by the classical hydrosilylation reaction between PHMS chains and vinyl modified silica. The bonded polymer is likely a copolymer than a homopolymer. The immobilization of the SC-LCP by heating results in the breaking of Si-O-Si bonds of the polysiloxane chain after the attack of the silica surface silanols. Applications to fullerenes and carotenes separation of these bonded stationary phases are compared to the separation power of a classical monomeric C18 stationary phase in NP-HPLC as n-hexane-toluene or methyl-tertiobutyl ether-methanol mixtures.  相似文献   

6.
A method for the preparation of novel mixed‐mode reversed‐phase/strong cation exchange stationary phase for the separation of fixed‐dose combination drugs has been developed. An epoxysilane bonded silica prepared by vapor phase deposition was used as a starting material to produce diol, octadecyl, sulfonate, and mixed octadecyl/sulfonate groups bonded silica phases. The chemical structure and surface coverage of the functional groups on these synthesized phases were confirmed by fourier‐transform infrared and solid‐state 13C NMR spectroscopy and elemental analysis. Alkylbenzene homologs, basic drugs, nucleobases and alkylaniline homologs were used as probes to demonstrate the reversed‐phase, ion exchange, hydrophilic interaction and mixed‐mode retention behaviors of these stationary phases. The octadecyl/sulfonate bonded silica exhibits pronounced mixed‐mode retention behavior and superior retentivity and selectivity for alkylaniline homologs. The mixed‐mode retention is affected by either ionic or solvent strength in the mobile phase, permiting optimization of a separation by fine tuning these parameters. The mixed‐mode stationary phase was applied to separate two fixed‐dose combination drugs: compound reserpine tablets and compound methoxyphenamine capsules. The results show that simultaneous separation of multiple substances in the compound dosage can be achieved on the mixed‐mode phase, which makes multi‐cycles of analysis for multiple components obsolete.  相似文献   

7.
The separation of C60 and C70 fullerenes on four different polysiloxane stationary phases was examined. It was determined that polar solvents can be used as mobile phases effectively for the separation of fullerene molecules. Unlike previously published work, a polymeric octadecyl siloxane (ODS) stationary phase provided higher separation factors for C70/C60 than did monomeric ODS stationary phases or phenyl substituted stationary phases. For example, for a methanol-diethyl ether (50:50, v/v) mobile phase and C60, k' approximately 5.0 separation factors, alpha = 3.3, were achieved with polymeric ODS compared to alpha = 2.2, with a monomeric ODS stationary phase. A linear solvation energy relationship (LSER) was used to model the importance of solvent interactions and stationary phase interaction to solute retention.  相似文献   

8.
Two charge-transfer stationary phases were prepared by immobilizing p-nitrobenzoic acid and naphthyl acetic acid onto silica. The nitrophenyl moiety and the naphthyl moiety were grafted to silica gel through the spacer of aminoalkyl silanes. The HPLC separation of C60, C70, and higher fullerenes on the new stationary phases was also studied. The influence of mobile phase and column temperature on the separation of C60 and C70 was examined, respectively. The retentions of C60 and C70 on the two stationary phases increased with decreasing toluene content in the mobile phase or with increasing column temperature. Higher fullerenes can be separated well using toluene as the mobile phase on the stationary phase of p-nitrobenzoic acid-bonded silica.  相似文献   

9.
A novel immobilization method was proposed for the preparation of pyrenebutyric acid-bonded silica (PYB-silica) stationary phases. The pyrene moiety was grafted to silica gel through spacers of aminoalkyl silanes. The HPLC separation of C60, C70 and higher fullerenes on the new pyrenebutyric acid-bonded silica stationary phases was also studied. Based on the temperature effect, the intermolecular interaction between stationary phases and solutes and the retention mechanism were discussed. The results of column loading capacity test demonstrated the potential for the separation of fullerenes in large amounts on the PYB-silica stationary phases.  相似文献   

10.
The chemical character, geometry, and architecture of chemically formed surface layers determine interactions between stationary phase, analyte, and mobile phase, and therefore the retention mechanisms (partitioning, adsorption, ion exchange, steric exclusion) of separated analytes. These interactions also depend on the structure and chemical character of the solutes and the composition of the mobile phase. High-molecular-weight fullerenes (C60 and C70) and water-soluble selenium-containing peptides (833 and 2607 Da) were used for the evaluation of laboratory-prepared octadecyl stationary phases with high and low coverage density before and after end-capping. The aim of this work was to study differences in surface coverage density and homogeneity and conformational changes of chemically bonded moieties and the influence of these parameters on the separation of mixtures of selenopeptides and fullerenes with significantly different molecular masses. A topographical model of the chemically modified stationary surface is presented.  相似文献   

11.
Summary The effect of column temperature, especially at low temperatures, on the separation of fullerenes on monomeric and polymeric octadecyl silica (ODS) bonded phases has been studied. Decreasing the column temperature induces an increase in selectivity. The best temperature for the separation of fullerenes was determined for both types of ODS phase with n-hexane eluent. The selectivity for higher fullerenes on monomeric phases becomes similar to that on polymeric phases to low temperature. It has been found that as the carbon content of monomeric phases is increased, the selectivity also becomes similar to polymeric phases.  相似文献   

12.
碳笼化合物的高效液相色谱研究   总被引:3,自引:0,他引:3  
采用化学键合固定相(DNAP-SP)及二元混合流动相(50%苯-正已烷),对碳笼化合物C60与C70的高效液相色谱(HPLC)分析及分离进行了研究。比较了多种流动相对C60、C70分离效果的影响,苯/正已烷混合体系是最好的流动相。  相似文献   

13.
Thermostated micro planar chromatography was applied for systematic separation studies of C60 and C70 fullerenes using n-alkanes as mobile phases on TLC and HPTLC plates coated with polyamide, silica gel, aluminum oxide as well as two types of octadecylsilica (C18) sorbents. Retention data were collected at constant temperature at 20 degrees C (+/-0.05 degrees C) using an unsaturated chamber mode with an eluent, such as n-pentane, n-hexane and n-heptane. The separation results under both saturated and unsaturated chamber modes for selected mobile/stationary phases were also examined, and several parameters, including separation factor (alpha) and resolution (R(S)), were compared with data obtained with high-performance liquid chromatography conditions. Interestingly, C60/C70 fullerenes separation performed on HPTLC plates with a developing distance of 45 mm was better for those observed on a 25 cm length analytical HPLC column under similar conditions to that on carbon coverage of the stationary phase, n-hexane as the mobile phase and separation temperature (R(S) = 1.84 and 1.68 for HPTLC, and HPLC, respectively). Moreover the advantage of the planar chromatographic separation of fullerenes studied is a short elution time of less than 6 min. Furthermore, the reported separation protocol shows a capability for the evaluation of fullerenes quantity in commercial samples.  相似文献   

14.
A novel method was proposed for the preparation of pyrenebutyric acid-modified magnesia-zirconia stationary phases. Pyrenebutyric acid was grafted to magnesia-zirconia composites with different pore sizes via the sodium salt of cis-(3-methyloxiranyl)phosphonic acid (fosfomycin) as spacers. Aminated fosfomycin was first absorbed onto the surface of magnesia-zirconia composites during the preliminary step to provide amino and hydroxy reactive sites. And then the pyrenebutyric acid was covalently attached to the amine or hydroxyl groups via amide or ester bonds. The resulting stationary phases were characterized by elemental analysis, diffused reflectance FT-IR, nitrogen adsorption analysis and 13C solid state NMR spectra. The HPLC separation of fullerenes on the new stationary phases with different pore sizes was also investigated. The chromatographic performance showed a dependence on the pore size of the magnesia-zirconia matrix. Little retention of fullerenes was observed on the stationary phase with pore sizes about 4.5 nm. However, on the modified magnesia-zirconia with pore sizes about 10 nm, selectivity factors (α) for C70/C60 separation were determined to be 1.76, 2.29, 2.41, 3.10, with carbon disulfide, chlorobenzene, xylene and toluene as mobile phases, respectively. And the high solubility of fullerenes in these solvents dramatically increased the overall potential with regard to preparative fullerene purification. Among the reported stationary phases with pyrene ligands, the pyrenebutyric acid-modified magnesia-zirconia (PYB-F-(ZrO2-MgO)) with larger pore sizes exhibited the best selectivity for fullerenes. The thermodynamic and kinetic behavior of fullerenes was also examined.  相似文献   

15.
Three different cholesterol-based stationary phases were investigated with respect to their time-dependent separation behavior. The examined stationary phases differ in the used spacer molecule and the synthesis route and were used under routine laboratory conditions over a period of two years. The chromatographic behavior of the three phases was determined by using a standard reference material in addition to a separation of a steroid mixture. The surface chemistry and the modification of these with the chemically bonded moiety were investigated with nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. Through applying different techniques we determined changes in retention and selectivity; solid-state NMR spectra showed changes in the surface chemistry dependent on the synthesis route. Superior long-term stability was observed for the undecanoate-cholesterol (UDC-Chol) column in terms of hydrophobic retentiveness and selectivity.  相似文献   

16.
With the given special structures, the CD bonded stationary phases are expected to have complementary retention properties with conventional C18 stationary phase, which will be helpful to enhance the polar selectivity in RP mode separation. In this work, two β-cyclodextrin (β-CD) bonded stationary phases for reversed-phase HPLC, including 1, 12-dodecyldiol linked β-CD stationary phase (CD1) and olio (ethylene glycol) (OEG) linked β-CD stationary phase (CD2), have been synthesized via click chemistry. The resulting materials were characterized with FT-IR and elemental analysis, which proved the successful immobilization of ligands. The similarities and differences in retention characteristics between the CD and C18 stationary phases have been elucidated by using comparative linear solvation energy relationships (LSERs). The force related to solute McGowan volume has no significant difference, while the hydrogen bonding and dipolar interactions between solutes and CD stationary phases are stronger than between solutes and C18, which is attributed to the special structures (CD and triazole groups) of CD stationary phases. Chemical origins are interpreted by comparison between CD1 and CD2. Similar dispersive interactions of CD1 and CD2 are attributed to their similar length of spacer arms. CD2 which contains OEG spacer arm has relative weaker HBD acidity but stronger HBA basicity. CD stationary phases display no serious different methylene selectivity and higher polar selectivity than in the case of C18. Higher acid selectivity and lower basic selectivity are observed on CD2 than on CD1. Distinctive retention properties and good complementary separation selectivity to C18 make the novel CD bonded stationary phases available for more application in RPLC.  相似文献   

17.
The retention behavior of low- and high-molecular-mass poly(ethylene oxide) (PEO) in reversed-phase (RP) and normal-phase (NP) liquid chromatography was investigated. In RPLC using a C18 bonded silica stationary phase and an acetonitrile-water mixture mobile phase, the sorption process of PEO to the stationary phase showed deltaH(o) > 0 and deltaS(o) > 0. Therefore, PEO retention in RPLC separation is an energetically unfavorable, entropy-driven process, which results in an increase of PEO retention as the temperature increases. In addition, at the enthalpy-entropy compensation point the elution volume of PEO was very different from the column void volume. These observations are quite different from the RPLC retention behavior of many organic polymers. The peculiar retention behavior of PEO in RPLC separation can be understood in terms of the hydrophobic interaction of this class of typical amphiphilic compounds with the non-polar stationary phase, on the one hand, and with the aqueous mobile phase, on the other. The entropy gain due to the release of the solvated water molecules from the PEO chain and the stationary phase is believed to be responsible for the entropy-driven separation process. On the other hand, in NPLC using an amino-bonded silica stationary phase and an acetonitrile-water mixture mobile phase, PEO showed normal enthalpy-driven retention behavior: deltaH(o) < 0 and deltaS(o) < 0, with the retention decreasing with increasing temperature and PEO eluting near the column void volume at the enthalpy-entropy compensation point. Therefore, high-resolution temperature gradient NPLC separation of high-molecular-mass PEO samples can be achieved with relative ease. The molecular mass distribution of high-molecular-mass PEO was found to be much narrower than that measured by size-exclusion chromatography.  相似文献   

18.
Previous work on the LC separation of peptides had shown that macrocyclic glycopeptide stationary phases to be selective for peptides of five to thirteen amino acids in length. In this work, the selectivity of the teicoplanin stationary phase is compared to that of a C18 stationary phase for seven diastereomeric enkephalin peptides. The teicoplanin stationary phase separated all seven diastereomeric enkephalin peptides in a single chromatographic run. The insertion of d-amino acids into the primary enkephalin sequence produced areas of hydrophobicity that influenced retention order on the C18 stationary phase. However, analogous trends are not observed on the teicoplanin stationary phase, which is more polar and structurally diverse. Optimization of the mobile phase and the use of a step-gradient for the enkephalin separation on the teicoplanin stationary phase is discussed. Also, the selectivity of macrocyclic glycopeptide stationary phases for peptides of 14, 28, 30, and 36 amino acids also is investigated and compared to separation on a C18 stationary phase. A method for eluting peptides with multiple basic amino acids, which tend to be strongly retained on the macrocyclic glycopeptide stationary phases, is presented.  相似文献   

19.
The retention behavior of five disubstituted benzene derivatives and two naphthalene derivatives is examined by using a chemically bonded β‐cyclodextrin silica stationary phase with the moiety containing the s‐triazine. The chromatographic results of five disubstituted benzene derivatives and two naphthalene derivatives show that effective separation is achieved on this stationary phase by high‐performance liquid chromatography. The results of the present investigation indicate that the formation of inclusion complexes plays a dominant role in the separation mechanism. However, the selectivity can be significantly enhanced by the n‐n interactions between the s‐triazine ring of the chemically bonded β‐cyclodextrin silica stationary phase and the aromatic ring of solutes. For example, the effective separation of the o‐, m‐, and p‐toluidine isomers on this stationary phase with the moiety containing the s‐triazine ring was better than on that of some β‐cyclodextrin bonded stationary phases without the moiety containing s‐triazine ring.  相似文献   

20.
This study represents the first time that both the mobile phase composition and the temperature are simultaneously controlled to examine silica-bonded octadecylsilyl (C18) ligands spectroscopically at typical liquid chromatographic (LC) mobile phase flow-rates and back-pressures. Raman spectroscopy is used to characterize the behavior of the C18 bonded ligands equilibrated at temperatures from 45 to 2 degrees C in neat, single-component, mobile phase solvents including: water, acetonitrile, methanol, and chloroform. In addition, the effect of stationary phase ligand bonding density is examined by using two different monomeric reversed-phase liquid chromatographic (RPLC) stationary phases, a 2.34 and a 3.52 micromol m(-2) Microporasil C18 stationary phase, under identical conditions. The direct, on-column, spectroscopic analysis used in this study allows direct evaluation of the temperature-dependent behavior of the bonded C18 ligands. The temperature-dependent ordering of the stationary phase ligands is examined to determine if the ligands undergo a phase transition from a less-ordered "liquid-like" state at higher temperatures to a more-ordered "solid-like" state at lower temperatures. A discrete phase transition was not observed, but rather a continual ordering as temperature was lowered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号