首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Atmospheric methane was detected by combining a photoacoustic (PA) sensor with several lasers emitting in both the near- and mid-infrared spectral ranges to check the achievable detection limits. The PA spectrometer is based on differential Helmholtz resonance. Near-infrared telecommunication-type laser diodes of increasing power, from Sensors Unlimited Inc. and Anritsu, were first used to scan the 2 nu(3) band of CH(4) near 1.65 microm. The best achieved detection limit is 0.15 ppm of methane at atmospheric pressure and with a 1s integration time. The PA sensor was then operated in conjunction with a quantum cascade laser from Alpes Lasers emitting near 7.9 microm on the nu(4) band of CH(4). The achieved detection limit is then of 3 ppb. The dramatic improvement in the detection limit obtained with the QC laser is due to the stronger optical power as well as to the capability of reaching the fundamental bands of methane lying in the mid-infrared spectral range.  相似文献   

2.
Two frequency chirped continuous wave diode lasers operating in the near infrared (IR) at wavelengths of lambda approximately 1.535 microm and lambda approximately 1.520 microm have been used to measure acetylene concentrations using the P(17) and R(9) rotational lines of the (nu1 + nu3) vibrational combination band. The diode lasers were frequency chirped by applying an electrical current pulse to the laser driver at a repetition rate of greater than 1 kHz. As the laser is operated at high repetition rates, more than 1000 spectra per second can, in principle, be acquired and summed, allowing fast accumulation of data, rapid averaging and consequent improvement of the signal to noise ratio and detection limit. Experiments were performed using a single-pass cell with a path length of 16.4 cm, and also an astigmatic multi-pass absorption cell aligned to give a path length of 56 m. Detection limits corresponding to minimum detectable absorption coefficients, alpha(min), of 5.6 x 10(-5) and 7.8 x 10(-8) cm(-1), respectively, were obtained over a 4 s detection bandwidth. These detection limits would correspond to mixing ratios of 21 parts per million by volume (ppmv) and 59 parts per billion by volume (ppbv) of acetylene at 1 atm in air, with the deleterious effects of pressure broadening accounted for. The single-pass cell was used to perform breakthrough volume (BTV) experiments for the low volume adsorbent traps used to pre-concentrate organic compounds in air, taking advantage of the capability of the system to measure concentrations in real time.  相似文献   

3.
The reaction between TiO(2+) and ONOOH in 0.9 M H(2)SO(4) provides evidence for direct formation, previously unobserved, of a HOONO-metal complex. The reaction proceeds via formation of an end-on complex (k = 3.0 x 10(2) M(-1) s(-1)) that rearranges to form a side-on complex (k approximately equal to 20 s(-1)). With ONOOH in excess, this rearrangement proceeds more slowly (k approximately equal to 0.1 s(-1)), probably because multiple hydrogen oxoperoxonitrate molecules form end-on complexes with oxotitanium(IV) and hinder rearrangement to the side-on complex. The absorption spectrum of the final product is that of TiO(2)(2+). Presumably, during the rearrangement or later, NO+ is lost.  相似文献   

4.
A compact, fast response, infrared spectrometer using four pulsed quantum cascade (QC) lasers has been applied to the analysis of gases in mainstream (MS) and sidestream (SS) cigarette smoke. QC lasers have many advantages over the traditional lead-salt tunable diode lasers, including near room temperature operation with thermoelectric cooling and single mode operation with improved long-term stability. The new instrument uses two 36 m, 0.3 l multiple pass absorption gas cells to obtain a time response of 0.1s for the MS smoke system and 0.4s for the SS smoke system. The concentrations of ammonia, ethylene, nitric oxide, and carbon dioxide for three different reference cigarettes were measured simultaneously in MS and SS smoke. A data rate of 20Hz provides sufficient resolution to determine the concentration profiles during each 2s puff in the MS smoke. Concentration profiles before, during and after the puffs also have been observed for these smoke constituents in SS smoke. Also, simultaneous measurements of CO(2) from a non-dispersive infrared (NDIR) analyzer are obtained for both MS and SS smoke. In addition, during this work, nitrous oxide was detected in both the MS and SS smoke for all reference cigarettes studied.  相似文献   

5.
In this paper, we describe recent results in mid-infrared heterodyne detection using quantum-cascade (QC) lasers as local oscillator (LO). In the 9 microm range, the heterodyne detection technique was first developed with CO(2) lasers and then with Pb-salt diode lasers. Quantum-cascade lasers are promising high quality tunable mid-infrared sources. We developed a quantum-cascade laser based heterodyne spectrometer. Atmospheric absorption spectra of ozone are presented.  相似文献   

6.
Time-resolved FT-IR spectra of carbon monoxide hydrogenation over alumina-supported ruthenium particles were recorded on the millisecond time scale at 700 K using pulsed release of CO and a continuous flow of H(2)-N(2) (ratio 0.067 or 0.15, 1 atm total pressure). Adsorbed carbon monoxide was detected along with gas phase products methane (3016 and 1306 cm(-1)), water (1900-1300 cm(-1)), and carbon dioxide (2348 cm(-1)). Aside from adsorbed CO, no other surface species were observed. The rate of formation of methane is 2.5 +/- 0.4 s(-1) and coincides with the rate of carbon dioxide growth (3.4 +/- 0.6 s(-1)), thus indicating that CH(4) and CO(2) originate from a common intermediate. The broad band of adsorbed carbon monoxide has a maximum at 2010 cm(-1) at early times (36 ms) that shifts gradually to 1960 cm(-1) over a period of 3 s as a result of the decreasing surface concentration of CO. Kinetic analysis of the adsorbed carbon monoxide reveals that surface sites absorbing at the high frequency end of the infrared band are temporally linked to gas phase product growth. Specifically, a (linear) CO site at 2026 cm(-1) decays with a rate constant of 2.9 +/- 0.1 s(-1), which coincides with the rise constant of CH(4). This demonstrates that the linear CO site at 2026 cm(-1) is the kinetically most relevant one for the rate-determining CO dissociation step under reaction conditions at 700 K.  相似文献   

7.
Vibrationally excited CF(2)ClCHFC(2)H(5)(CF(2)ClCHFC(2)D(5)) molecules were prepared in the gas phase at 300 K with approximately 93 kcal mol(-1) of energy by recombination of CF(2)ClCHF and C(2)H(5) or C(2)D(5) radicals. Three unimolecular reactions were observed. 1,2-ClF interchange converts CF(2)ClCHFC(2)H(5)(CF(2)ClCHFC(2)D(5)) into CF(3)CHClC(2)H(5)(CF(3)CHClC(2)D(5)), and subsequent 2,3-ClH (ClD) elimination gives CF(3)CH=CHCH(3) (CF(3)CH=CDCD(3)). 2,3-FH(FD) elimination gives cis- and trans-CF(2)ClCH=CHCH(3) (CF(2)ClCH=CDCD(3)), and 1,2-ClH elimination gives CF(2)=CFCH(2)CH(3) (CF(2)=CFCD(2)CD(3)). The experimental rate constants for CF(2)ClCHFC(2)H(5) (CF(2)ClCHFC(2)D(5)) were 1.3 x 10(4) (0.63 x 10(4)) s(-1) for 1,2-FCl interchange and 2.1 x 10(4) (0.61 x 10(4)) s(-1) with a trans/cis ratio of 3.7 for 2,3-FH(FD) elimination. The 1,2-ClH process was the least important with a branching fraction of only 0.08 +/- 0.04. The rate constants for 2,3-ClH (ClD) elimination from CF(3)CHClC(2)H(5) (CF(3)CHClC(2)D(5)) were 1.8 x 10(6) (0.49 x 10(6)) s(-1) with a trans/cis ratio of 2.4. Density functional theory was used to compute vibrational frequencies and structures needed to obtain rate constants from RRKM theory. Matching theoretical and experimental rate constants provides estimates of the threshold energies, E0, for the three reaction pathways; 1,2-FCl interchange has the lowest E0. The unimolecular reactions of CF(2)ClCHFC(2)H(5) are compared to those of CF(2)ClCHFCH(3). Both of these systems are compared to CH(3)CHFC(2)H(5) to illustrate the influence of a CF(2)Cl group on the E0 for FH elimination.  相似文献   

8.
The photochemistry of Fe(CO)5 (5) has been studied in heptane, supercritical (sc) Ar, scXe, and scCH4 using time-resolved infrared spectroscopy (TRIR). 3Fe(CO)4 ((3)4) and Fe(CO)3(solvent) (3) are formed as primary photoproducts within the first few picoseconds. Complex 3 is formed via a single-photon process. In heptane, scCH4, and scXe, (3)4 decays to form (1)4 x L (L = heptane, CH4, or Xe) as well as reacting with 5 to form Fe2(CO)9. In heptane, 3 reacts with CO to form (1)4 x L. The conversion of (3)4 to (1)4 x L has been monitored directly for the first time (L = heptane, kobs = 7.8(+/- 0.3) x 10(7) s(-1); scCH4, 5(+/- 1) x 10(6) s(-1); scXe, 2.1(+/- 0.1) x 10(7) s(-1)). In scAr, (3)4 and 3 react with CO to form 5 and (3)4, respectively. We have determined the rate constant (kCO = 1.2 x 10(7) dm3 mol(-1) s(-1)) for the reaction of (3)4 with CO in scAr, and this is very similar to the value obtained previously in the gas phase. Doping the scAr with either Xe or CH4 resulted in (3)4 reacting with Xe or CH4 to form (1)4 x Xe or (1)4 x CH4. The relative yield, [(3)4]:[3] decreases in the order heptane > scXe > scCH4 > scAr, and pressure-dependent measurements in scAr and scCH4 indicate an influence of the solvent density on this ratio.  相似文献   

9.
The previously unknown radical anions of unsaturated E2N4S2 ring systems (E=RC, R2NC, R2P) can be generated voltammetrically by the one-electron reduction of the neutral species and, despite half-lives on the order of a few seconds, have been unambiguously characterized by electron paramagnetic resonance (EPR) spectroelectrochemistry using a highly sensitive in situ electrolysis cell. Cyclic voltammetric studies using a glassy-carbon working electrode in CH3CN and CH2Cl2 with [nBu4N][PF6] as the supporting electrolyte gave reversible formal potentials for the [E2N4S2]0/- process in the range of -1.25 to -1.77 V and irreversible peak potentials for oxidation in the range of 0.66 to 1.60 V (vs the Fc+/0 couple; Fc=ferrocene). Reduction of the neutral compound undergoes an electrochemically reversible one-electron transfer, followed by the decay of the anion to an unknown species via a first-order (chemical) reaction pathway. The values of the first-order rate constant, kf, for the decay of all the radical anions in CH2Cl2 have been estimated from the decay of the EPR signals for (X-C6H4CN2S)2*-, where X=4-OCH3 (kf=0.04 s(-1)), 4-CH3 (kf=0.02 s(-1)), 4-H (kf=0.08 s(-1)), 4-Cl (kf=0.05 s(-1)), 4-CF3 (kf=0.05 s(-1)), or 3-CF3 (kf=0.07 s(-1)), and for [(CH3)3CCN2S]2*- (kf=0.02 s(-1)), [(CH3)2NCN2S]2*- (kf=0.05 s(-1)), and [(C6H5)2PN2S]2*- (kf=0.7 s(-1)). Values of kf for X=4-H and for [(CH3)2NCN2S]2*- were also determined from the cyclic voltammetric responses (in CH2Cl2) and were both found to be 0.05 s(-1). Possible pathways for the first-order anion decomposition that are consistent with the experimental observations are discussed. Density functional theory calculations at the UB3LYP/6-31G(d) level of theory predict the structures of the radical anions as either planar (D2h) or folded (C2v) species; the calculated hyperfine coupling constants are in excellent agreement with experimental results. Linear correlations were observed between the voltammetrically determined potentials and both the orbital energies and Hammett coefficients for the neutral aryl-substituted rings.  相似文献   

10.
Quenching of excited iodine atoms (I(5p5, 2P1/2)) by nitrogen oxides are processes of relevance to discharge-driven oxygen iodine lasers. Rate constants at ambient and elevated temperatures (293-380 K) for quenching of I(2P1/2) atoms by NO2, N2O4, and N2O have been measured using time-resolved I(2P1/2) --> I(2P3/2) 1315 nm emission. The excited atoms were generated by pulsed laser photodissociation of CF3I at 248 nm. The rate constants for I(2P1/2) quenching by NO2 and N2O were found to be independent of temperature over the range examined with average values of (2.9 +/- 0.3) x 10(-15) and (1.4 +/- 0.1) x 10(-15) cm3 s(-1), respectively. The rate constant for quenching of I(2P1/2) by N2O4 was found to be (3.5 +/- 0.5) x 10(-13) cm3 s(-1) at ambient temperature.  相似文献   

11.
The lowest energy transition of [Ru(CN)(4)(ppb)](2-) (ppb = dipyrido[2,3-a:3',2'-c]phenazine), a metal-to-ligand charge transfer, has been probed using resonance Raman spectroscopy with excitation wavelengths (488, 514, 530, and 568 nm) spanning the lowest energy absorption band centered at 522 nm. Wave packet modeling was used to simultaneously model this lowest energy absorption band and the cross sections of the resonance Raman bands at the series of excitation wavelengths across this absorption band. A fit to within +/-20% was obtained for the Raman cross sections, close to the experimental uncertainty which is typically 10-20%. Delta values of 0.1-0.4 were obtained for modes which were either localized on the ppb ligand (345-1599 cm(-1)) or the CN modes (2063 and 2097 cm(-1)). DFT calculations reveal that the resonance Raman bands observed are due to modes delocalized over the entire ppb ligand.  相似文献   

12.
This paper reports synthesis, characterization and structural optimization of amino-thienyl-dioxocyano-pyridine (ATOP) chromophores toward a multifunctional amorphous material with unprecedented photorefractive performance. The structural (dynamic NMR, XRD) and electronic (UV/vis, electrooptical absorption, Kerr effect measurements) characterization of the ATOP chromophore revealed a cyanine-type pi-conjugated system with an intense and narrow absorption band (epsilon(max) = 140 000 L mol(-)(1) cm(-)(1)), high polarizability anisotropy (deltaalpha(0) = 55 x 10(-)(40) C V(-)(1) m(2)), and a large dipole moment (13 D). This combination of molecular electronic properties is a prerequisite for strong electrooptical response in photorefractive materials with low glass-transition temperature (T(g)). Other important materials-related properties such as compatibility with the photoconducting poly(N-vinylcarbazole) (PVK) host matrix, low melting point, low T(g), and film-forming capabilities were optimized by variation of four different alkyl substituents attached to the ATOP core. A morphologically stable PVK-based composite containing 40 wt % of ATOP-3 showed an excellent photorefractive response characterized by a refractive index modulation of Deltan approximately 0.007 and a gain coefficient of Gamma approximately 180 cm(-)(1) at a moderate electrical field strength of E = 35 V microm(-)(1). Even larger effects were observed with thin amorphous films consisting of the pure glass-forming dye ATOP-4 (T(g) = 16 degrees C) and 1 wt % of the photosensitizer 2,4,7-trinitro-9-fluorenylidene-malononitrile (TNFM). This material showed complete internal diffraction at a field strength of only E = 10 V microm(-)(1) and Deltan reached 0.01 at only E = 22 V microm(-)(1) without addition of any specific photoconductor.  相似文献   

13.
In this study, a sensitive and rapid method for hydrogen peroxide (H(2)O(2)) determination has been developed with the aid of oxidation decolorization of methyl orange (MO) by using Fenton reactions, because the decolorization extent of MO solution (at the maximum absorption wavelength of 507 nm) is proportion to the concentration of H(2)O(2). Under optimum conditions, this spectrophotometric method for the H(2)O(2) analysis yields a dynamic range of H(2)O(2) concentration from 5.0 x 10(-7) to 1.0 x 10(-4) mol L(-1) (r=0.997) and a detection limit (3 sigma/k) of 2.0 x 10(-7) mol L(-1). This method for the determination of H(2)O(2) (0.04 mmol L(-1)) is able to tolerate the interference from NaCl (0-5.0 mmol L(-1)), Na(2)SO(4) (0-5.0 mmol L(-1)), MgCl(2) (0-5.0 mmol L(-1)), sodium humate (0-0.1 mmol L(-1)), benzene (0-0.2 mmol L(-1)), toluene (0-0.2 mmol L(-1)), chlorobenzene (0-0.2 mmol L(-1)) and chloroform (0-0.2 mmol L(-1)). The analysis results for practical rainwater samples are in good agreement with the classical N,N-diethyl-p-phenylenediamine (DPD) method for H(2)O(2) determination.  相似文献   

14.
Lin YY  Lai SW  Che CM  Fu WF  Zhou ZY  Zhu N 《Inorganic chemistry》2005,44(5):1511-1524
Reaction of equimolar amounts of AgCN and PCy3 gave the polymer [(Cy3P)Ag(NCAgCN)]infinity (1), whereas employment of excess PCy3 yielded the discrete compound [(Cy3P)2Ag(NCAgCN)] (2). Reacting bis(dicyclohexylphosphino)methane (dcpm) with AgCN in 1:1 and 1:2 molar ratios gave two crystalline forms, namely [Ag2(mu-dcpm)2][Ag(CN)2]2 x (CH3OH)2 (3a x (CH3OH)2) and [Ag2(mu-dcpm)2][Ag(CN)2]2 (3b), respectively. The similar reaction of CuCN with PCy3 afforded the polymeric compound [{(Cy3P)Cu(CN)}3]infinity (4), whereas treatment of CuCN with dcpm gave [Cu2(mu-dcpm)2(CN)2] (5). Employment of diphosphine ligands with longer -(CH2)n- spacers, such as 1,2-bis(dicyclohexylphosphino)ethane (dcpe, n = 2) and 1,3-bis(diphenylphosphino)propane (dppp, n = 3), in reactions with [Cu(CH3CN)4]PF6 and KCN afforded the macrocylic compounds [{Cu(dcpe)}2(CN)(mu-dcpe)]PF6 (6(PF6)) and [{Cu(dppp)}3(CN)2(mu-dppp)]PF6 (7(PF6)), respectively. The hexanuclear complex [Cu(CN)(PCy3)]6 (8) was obtained by reacting CuCN with PCy3 in the presence of sodium pyridine-2-thiolate. The UV-vis absorption spectrum of 1 in acetonitrile displays a weak shoulder at 245 nm (epsilon = 350 dm3 mol(-1) cm(-1)). For 3a, 3b, and 5, the intense absorption bands at lambdamax = 257-276 nm with epsilon values of (1.73-1.80) x 10(4) dm3 mol(-1) cm(-1) are assigned to [ndsigma --> (n + 1)psigma] transitions. Complexes 3a and 3b emit at lambdamax = 365 nm in CH3CN (quantum yield approximately 6 x10(-3), lifetime approximately 0.2 micros). The solid-state emission of 5 (lambdamax = 470 and 488 nm at 298 and 77 K) is red-shifted in energy from that of 4 (lambdamax = 401 and 405 nm at 298 and 77 K, respectively). In 77 K MeOH/EtOH (1:4) glassy solution, complexes 4-8 display intense emission with lambdamax at 382-416 nm, which is assigned to the [3d --> (4s, 4p)] triplet excited state.  相似文献   

15.
Reactions of ozone with some vinyl compounds of the general structure CH2=CH-X were studied in aqueous solution. Rate constants (in brackets, unit: dm3 mol-1 s-1) were determined: acrylonitrile (670), vinyl acetate (1.6 x 10(5)), vinylsulfonic acid (anion, 8.3 x 10(3)), vinyl phenylsulfonate (ca. 200), vinyl diethylphosphonate (3.3 x 10(3)), vinylphosphonic acid (acid, 1 x 10(4); mono-anion, 2.7 x 10(4); di-anion, 1 x 10(5)), vinyl bromide (1 x 10(4)). The main pathway leads to the formation of HOOCH2OH and HC(O)X. As measured by stopped flow with conductometric detection, the latter one may undergo rapid hydrolysis by water, e.g. HC(O)CN (3 s-1). Other HC(O)X hydrolyse much slower, e.g. HC(O)PO3(Et)2 (7 x 10(-3) s-1) and HC(O)P(OH)O2- (too slow to be measured). The OH(-)-induced hydrolyses range from ca. 5 dm3 mol-1 s-1 [HC(O)PO(3)2-] to 3.8 x 10(5) dm3 mol-1 s-1 [HC(O)CN]. HC(O)Br mainly decomposes rapidly (too fast for the determination of the rate) into CO and Br- plus H+, and the competing hydrolysis is of minor importance (3.7%). The slow hydrolysis of HC(O)PO(3)2- at pH 10.2, where HOOCH2OH is rapidly decomposed into CH2O plus H2O2, allows an H2O2-induced decomposition (k = 260 dm3 mol-1 s-1) to take place. Formate and phosphate are the final products.  相似文献   

16.
Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level [T. B. Adler et al., J. Chem. Phys. 127, 221106 (2007)] has been employed in a study of the potential energy surfaces for the complexes H(2)C(3)H(+) · Ar and c-C(3)H(3)(+) · Ar. For the former complex, a pronounced minimum with C(s) symmetry was found (D(e) ≈ 780 cm(-1)), well below the local "H-bound" minimum with C(2v) symmetry (D(e) ≈ 585 cm(-1)). The absorption at 3238 cm(-1) found in the recent infrared photodissociation spectra [A. M. Ricks et al., J. Chem. Phys. 132, 051101 (2010)] is, thus, interpreted as an essentially free acetylenic CH stretching vibration of the propargyl cation. A global minimum of C(s) symmetry was also obtained for c-C(3)H(3)(+) (D(e) ≈ 580 cm(-1)), but the energy difference with respect to the local C(2v) minimum is only 54 cm(-1).  相似文献   

17.
The photodissociation of p-xylene at 266 nm in n-heptane and acetonitrile has been studied with use of nanosecond fluorescence and absorption spectroscopy. The p-methylbenzyl radical was identified in n-heptane and acetonitrile by its fluorescence, which was induced by excitation at 308 nm. The p-xylene radical cation was observed in acetonitrile by its absorption. In n-heptane, the decay rate of the S(1) state of p-xylene ((3.2 +/- 0.2) x 10(7) s(-1)) is equal to the growth rate of the p-methylbenzyl radical ((2.7 +/- 0.4) x 10(7) s(-1)), showing that the molecule dissociates via the S(1) state into the radical by C-H bond homolysis (quantum efficiency approximately 5.0 x 10(-3)). In acetonitrile, the formation of the p-xylene radical cation requires two 266 nm photons, and the decay rate of the radical cation ((1.6 +/- 0.2) x 10(6) s(-1)) equals the growth rate of the p-methylbenzyl radical ((2.0 +/- 0.2) x 10(6) s(-1)). This shows that the radical cation dissociates into the radical by deprotonation (quantum efficiency approximately 8.9 x 10(-2)).  相似文献   

18.
We demonstrate a high-precision measurement of the isotopomer abundance ratio 14N(15)N(16)O/15N(14)N(16)O/14N(14)N(16)O (approximately 0.37/0.37/100) using three wavelength-modulated 2 microm diode lasers combined with a multipass cell which provides different optical pathlengths of 100 and 1 m to compensate the large abundance difference. A set of absorption lines for which the absorbances have almost the same temperature dependence are selected so that the effect of a change in gas temperature is minimized. The test experiment using pure nearly natural-abundance N(2)O samples showed that the site-selective 15N/14N ratios can be measured relative to a reference material with a precision of +/-3 x 10(-4) (+/-0.3 per thousand) in approximately 2 h.  相似文献   

19.
The formation of CH(3) in the 248 or 266 nm photolysis of acetone (CH(3)C(O)CH(3)), 2-butanone (methylethylketone, MEK, CH(3)C(O)C(2)H(5)) and acetyl bromide (CH(3)C(O)Br) was examined using the pulsed photolytic generation of the radical and its detection by transient absorption spectroscopy at 216.4 nm. Experiments were carried out at room temperature (298 +/- 3 K) and at pressures between approximately 5 and 1500 Torr N(2). Quantum yields for CH(3) formation were derived relative to CH(3)I photolysis at the same wavelength in back-to-back experiments. For acetone at 248 nm, the yield of CH(3) was greater than unity at low pressures (1.42 +/- 0.15 extrapolated to zero pressure) confirming that a substantial fraction of the CH(3)CO co-product can dissociate to CH(3) + CO under these conditions. At pressures close to atmospheric the quantum yield approached unity, indicative of almost complete collisional relaxation of the CH(3)CO radical. Measurements of increasing CH(3)CO yield with pressure confirmed this. Contrasting results were obtained at 266 nm, where the yields of CH(3) (and CH(3)CO) were close to unity (0.93 +/- 0.1) and independent of pressure, strongly suggesting that nascent CH(3)CO is insufficiently activated to decompose on the time scales of these experiments at 298 K. In the 248 nm photolysis of CH(3)C(O)Br, CH(3) was observed with a pressure independent quantum yield of 0.92 +/- 0.1 and CH(3)CO remained below the detection limit, suggesting that CH(3)CO generated from CH(3)COBr photolysis at 248 nm is too highly activated to be quenched by collision. Similar to CH(3)C(O)CH(3), the photolysis of CH(3)C(O)C(2)H(5) at 248 nm revealed pressure dependent yields of CH(3), decreasing from 0.45 at zero pressure to 0.19 at pressures greater than 1000 Torr with a concomitant increase in the CH(3)CO yield. As part of this study, the absorption cross section of CH(3) at 216.4 nm (instrumental resolution of 0.5 nm) was measured to be (4.27 +/- 0.2) x 10(-17) cm(2) molecule(-1) and that of C(2)H(5) at 222 nm was (2.5 +/- 0.6) x 10(-18) cm(2) molecule(-1). An absorption spectrum of gas-phase CH(3)C(O)Br (210-305 nm) is also reported for the first time.  相似文献   

20.
Rate coefficients over the temperature range 206-380 K are reported for the gas-phase reaction of OH radicals with 2,3,3,3-tetrafluoropropene (CF(3)CF=CH(2)), k(1)(T), and 1,2,3,3,3-pentafluoropropene ((Z)-CF(3)CF=CHF), k(2)(T), which are major components in proposed substitutes for HFC-134a (CF(3)CFH(2)) in mobile air-conditioning units. Rate coefficients were measured under pseudo-first-order conditions in OH using pulsed-laser photolysis to produce OH and laser-induced fluorescence to detect it. Rate coefficients were found to be independent of pressure between 25 and 600 Torr (He, N(2)). For CF(3)CF=CH(2), the rate coefficients, within the measurement uncertainty, are given by the Arrhenius expression k(1)(T)=(1.26+/-0.11) x 10(-12) exp[(-35+/-10)/T] cm(3) molecule(-1) s(-1) where k(1)(296 K)=(1.12+/-0.09) x 10(-12) cm(3) molecule(-1) s(-1). For (Z)-CF(3)CF=CHF, the rate coefficients are given by the non-Arrhenius expression k(2)(T)=(1.6+/-0.2) x 10(-18)T(2) exp[(655+/-50)/T] cm(3) molecule(-1) s(-1) where k(2)(296 K)=(1.29+/-0.06) x 10(-12) cm(3) molecule(-1) s(-1). Over the temperature range most relevant to the atmosphere, 200-300 K, the Arrhenius expression k(2)(T)=(7.30+/-0.7) x 10(-13) exp[(165+/-20)/T] cm(3) molecule(-1) s(-1) reproduces the measured rate coefficients very well and can be used in atmospheric model calculations. The quoted uncertainties in the rate coefficients are 2sigma (95% confidence interval) and include estimated systematic errors. The global warming potentials for CF(3)CF=CH(2) and (Z)-CF(3)CF=CHF were calculated to be <4.4 and <3.6, respectively, for the 100 year time horizon using infrared absorption cross sections measured in this work, and atmospheric lifetimes of 12 and 10 days that are based solely on OH reactive loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号