首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The demand for petroleum-derived gasoline in the transportation sector is on the rise. For better knowledge of gasoline combustion in practical combustion systems, this study presents experimental measurements and numerical prediction of autoignition temperatures and extinction limits of six FACE (fuels for advanced combustion engines) gasoline fuels in counterflow flames. Extinction limits were measured at atmospheric pressures while the experiments for autoignition temperatures were carried out at atmospheric and high pressures. For atmospheric pressure experiment, the fuel stream consists of the pre-vaporized fuel diluted with nitrogen, while a condensed fuel configuration is used for ignition experiment at higher chamber pressures. The oxidizer stream is pure air. Autoignition temperatures of the tested fuels are nearly the same at atmospheric pressure, while a huge difference is observed as the pressure is increased. Unlike the ignition temperatures at atmospheric pressures, minor difference exists in the extinction limits of the tested fuels. Simulations were carried out using a recently developed gasoline surrogate model. Both multi-component and n-heptane/isooctane mixtures were used as surrogates for the simulations. Overall, the n-heptane/isooctane surrogate mixtures are consistently more reactive as compared the multi-component surrogate mixtures. Transport weighted enthalpy and radical index analysis was used to explain the differences in extinction strain rates for the various fuels.  相似文献   

2.
A reduced chemical kinetic mechanism consisting of 48 species and 67 reactions is developed and validated for a gasoline surrogate fuel. The surrogate fuel is modeled as a blend of iso-octane, n-heptane, and toluene. The mechanism reduction is performed using sensitivity analysis, investigation of species concentrations, and consideration of the main reaction path. Comparison between ignition delay times calculated using the proposed mechanism and those obtained from shock tube data show that the reduced mechanism can predict delay times with good accuracy at temperatures above 1000 K. The mechanism can also predict the two-stage ignition at the moment of ignition. A rapid compression machine (RCM) is designed to measure ignition delay times of gasoline and gasoline surrogates at temperatures between 890 and 1000 K. Our experimental results suggest that a new gasoline surrogate that has a different mixture ratio than previously defined surrogates is the most similar to gasoline. In addition, the reduced mechanism is validated for the RCM experimental conditions using CFD simulations.  相似文献   

3.
Alcohols, and particularly isoalcohols, are potentially advantageous blendstocks towards achieving efficient, low-carbon intensity internal combustion engines. Their use in advanced configurations, such as boosted spark-ignition or spark-assisted compression ignition, requires a comprehensive understanding of their blending effects on the low- and intermediate-temperature autoignition behavior of petroleum-derived gasoline. This work reports an experimental and modeling study of such autoignition characteristics quantified in a twin-piston rapid compression machine. Isopropanol and isobutanol are blended into a research-grade gasoline (FACE-F) at oxygenate blend levels of 0 to 30% vol/vol, with tests conducted at pressures of 20 and 40 bar, temperatures from 700 to 1000 K, and dilute stoichiometric fuel loadings. Changes to overall reactivity, including first-stage and main ignition times, and preliminary exothermicity are established, with comparisons made to previous measurements with ethanol-blended FACE-F gasoline.It is found that at low-temperature/NTC conditions (700–860 K) the isoalcohols suppress first-stage reactivity and associated heat release while main ignition times are extended. At NTC/intermediate-temperature (860–1000 K) conditions changes to fuel reactivity are less significant with isopropanol slightly suppressing reactivity and isobutanol promoting ignition. Detailed chemical kinetic modeling is used to interpret the experimental measurements. Overall trends of suppression or promotion in the blending behavior are reasonably captured by the model. Sensitivity and rate of production analyses indicate that at lower temperatures H-atom abstraction reactions from the surrogate fuel molecules (e.g., cyclopentane, isooctane) and the isoalcohols via ?H are important leading to TC3H6OH and IC4H8OH–C radicals, for isopropanol and isobutanol respectively, which act as scavengers in the system. At higher temperatures, similar chemistries are dominant, but there is an increasing importance of abstraction by HO2. The kinetic modeling also indicates that the promoting effect of isobutanol at higher temperatures is due to the increased abstractions at the γ-sites, while at lower temperatures abstraction at the α-site leads to greater reactivity suppression.  相似文献   

4.
The analysis and interpretation of the combustion chemistry is greatly simplified by using simple mixtures of pure components, referred to as surrogates, in lieu of fully-blended transportation fuels, such as gasoline. Recognizing that the ability to model autoignition chemistry is critical to understanding the operation of Homogeneous Charged Compression Ignition engines, this work is an attempt to experimentally and computationally assess the autoignition responses of research grade gasoline and two of its proposed surrogates reported in the literature using a rapid compression machine (RCM), for the low-to-intermediate temperature range and at high pressures. The first surrogate studied is a three-component mixture of iso-octane, n-heptane, and toluene. The second is a four-component mixture that includes an olefin (2-pentene), in addition to the ones noted above. Ignition delay times of stoichiometric mixtures, for gasoline and the two surrogates in air, are measured using an RCM for pressures of 20 and 40 bar, and in the temperature range of 650–900 K. The four-component surrogate is found to emulate the ignition delay times of gasoline more closely when compared to the three-component surrogate. Additionally, the experimental data are compared against the computed results from a recently developed surrogate model for gasoline combustion. A good agreement between the experimental and computed results is observed, while discrepancies are also identified and discussed.  相似文献   

5.
Knowledge of the autoignition characteristics of diesel fuels is of great importance for understanding the combustion performance in engines and developing surrogate fuels. Here ignition delays of China's stage 6 diesel, a commercial fuel, were measured in a heated rapid compression machine (RCM) under engine-relevant conditions. Gas-phase autoignition experiments were carried out at equivalence ratios ranging from 0.37 to 1.0, under compressed pressures of 10, 15, and 20?bar, and within a temperature range of 685–865?K. In all investigated conditions, negative temperature coefficient (NTC) behavior of the total ignition delays is observed. The autoignition of the diesel fuel exhibits pronounced two-stage characteristics with strong low-temperature reactivity. Experimental results indicate that the total ignition delays shorten with increasing compressed pressure, oxygen mole fraction and fuel mole fraction. The first-stage ignition delays are mainly controlled by compressed temperature and also affected by oxygen mole fraction and compressed pressure but show a very weak dependence on fuel mole fraction. Correlations describing the first-stage ignition delay and the total ignition delay were proposed to further clarify the ignition delay dependence on the multiple factors. Additionally, it is found that the newly measured ignition delays well coincide with and complement the diesel ignition data in the literature. A recently developed diesel mechanism was used to simulate the diesel autoignition on the RCM. The simulation results are found to agree well the experimental measurements over the whole temperature ranges. Species concentration analysis and brute force sensitivity analysis were also conducted to identify the crucial species and reactions controlling the autoignition of the diesel fuel.  相似文献   

6.
An experimental and numerical study of combustion of a gasoline certification fuel (‘indolene’), and four (S4) and five (S5) component surrogates for it, is reported for the configurations of an isolated droplet burning with near spherical symmetry in the standard atmosphere, and a single cylinder engine designed for advanced compression ignition of pre-vaporized fuel. The intent was to compare performance of the surrogate for these different combustion configurations and to assess the broader applicability of the kinetic mechanism and property database for the simulations. A kinetic mechanism comprised of 297 species and 16,797 reactions was used in the simulations that included soot formation and evolution, and accounted for unsteady transport, liquid diffusion inside the droplet, radiative heat transfer, and variable properties. The droplet data showed a clear preference for the S5 surrogate in terms of burning rate. The simulations showed generally very good agreement with measured droplet, flame, and soot shell diameters. Measurements of combustion timing, in-cylinder pressure, and mass-averaged gas temperature were also well predicted with a slight preference for the S5 surrogate. Preferential vaporization was not evidenced from the evolution of droplet diameter but was clearly revealed in simulations of the evolution of mixture fractions inside the droplets. The influence of initial droplet diameter (Do) on droplet burning was strong, with S5 burning rates decreasing with increasing Do due to increasing radiation losses from the flame. Flame extinction was predicted for Do =3.0 mm as a radiative loss mechanism but not predicted for smaller Do for the conditions of the simulations.  相似文献   

7.
Detailed high-fidelity kinetic models of fuels are of great significance by providing guidance for the improvement of the combustion performance in engines and promising the reduction of design cycle of new concept combustors. However, the kinetic modeling works on Chinese RP-3 kerosene, the most widely used civil aviation fuel in China, are meager to date. In this study, a kinetic model, including a surrogate fuel and its combustion kinetic mechanism, were developed to describe the combustion of RP-3. Firstly, a surrogate comprised of components n-dodecane, 2,2,4,6,6-pentamethylheptane (PMH), n-butylcyclohexane and n-butylbenzene (22.82/31.30/19.19/26.69 mol%) was proposed based on the combustion property target matching method. These components are all within the typical molecular size (C10-C14) of jet fuels and thereby can potentially improve the ability of the surrogate in emulating the properties that depend on molecular size. Experiments were then carried out in a heated rapid compression machine and a heated shock tube to evaluate the performance of the surrogate in reproducing the combustion behavior of the target fuel over wide conditions. It is found that the surrogate can reproduce the autoignition characteristics of RP-3 very well. A chemical kinetic mechanism was developed to describe the oxidation of this surrogate. This mechanism was assembled using a published n-butylbenzene sub-mechanism and our previous sub-mechanisms for the other pure components, and was assessed against the present experimental data. The results showed that the simulations agreed well with the experimental data under the investigated conditions, demonstrating that the composition of the surrogate and its mechanism are appropriate to describe the combustion of RP-3. The first-stage ignition negative temperature coefficient behavior and the evolution of key radicals were investigated using the kinetic model.  相似文献   

8.
An alternative way to formulate transportation fuel surrogates using model predictions of gas-phase combustion targets is explored and compared to conventional approaches. Given a selection of individual fuel components, a multi-component chemical mechanism describing their oxidation kinetics, and a database of experimental measurements for key combustion quantities such as ignition delay times and laminar burning velocities, the optimal fractional amount of each fuel is determined as the one yielding the smallest error between experiments and model predictions. Using a previously studied three-component jet fuel surrogate containing n-dodecane, methyl-cyclohexane, and m-xylene as a case study, this article investigates in a systematic manner how the surrogate composition affects model predictions for ignition delay time and laminar burning velocities over a wide range of temperature, pressure and stoichiometry conditions, and compares the results to existing surrogate formulation techniques, providing new insights on how to define surrogates for simulation purposes. Finally, an optimisation algorithm is described to accelerate the identification of optimal surrogate compositions in this context.  相似文献   

9.
The ignition behavior of n-dodecane micro-pilot spray in a lean-premixed methane/air charge was investigated in an optically accessible Rapid Compression-Expansion Machine at dual-fuel engine-like pressure/temperature conditions. The pilot fuel was admitted using a coaxial single-hole 100?µm injector mounted on the cylinder periphery. Optical diagnostics include combined high-speed CH2O-PLIF (10?kHz) and Schlieren (80?kHz) imaging for detection of the first-stage ignition, and simultaneous high-speed OH* chemiluminescence (40?kHz) imaging for high-temperature ignition. The aim of this study is to enhance the fundamental understanding of the interaction of methane with the auto-ignition process of short pilot-fuel injections. Addition of methane into the air charge considerably prolongs ignition delay of the pilot spray with an increasing effect at lower temperatures and with higher methane/air equivalence ratios. The temporal separation of the first CH2O detection and high-temperature ignition was found almost constant regardless of methane content. This was interpreted as methane mostly deferring the cool-flame reactivity. In order to understand the underlying mechanisms of this interaction, experimental investigations were complemented with 1D-flamelet simulations using detailed chemistry, confirming the chemical influence of methane deferring the reactivity in the pilot-fuel lean mixtures. This shifts the onset of first-stage reactivity towards the fuel-richer conditions. Consequently, the onset of the turbulent cool-flame is delayed, leading to an overall increased high-temperature ignition delay. Overall, the study reveals a complex interplay between entrainment, low T and high T chemistry and micro-mixing for dual-fuel auto-ignition processes for which the governing processes were identified.  相似文献   

10.
Surrogate fuels aim to reproduce real fuel combustion characteristics in order to enable predictive simulations and fuel/engine design. In this work, surrogate mixtures were formulated for three diesel fuels (Coryton Euro and Coryton US-2D certification grade and Saudi pump grade) and two jet fuels (POSF 4658 and POSF 4734) using the minimalist functional group (MFG) approach, a method recently developed and tested for gasoline fuels. The diesel and jet fuel surrogates were formulated by matching five important functional groups, while minimizing the surrogate components to two species. Another molecular parameter, called as branching index (BI), which denotes the degree of branching was also used as a matching criterion. The present works aims to test the ability of the MFG surrogate methodology for high molecular weight fuels (e.g., jet and diesel). 1H Nuclear Magnetic Resonance (NMR) spectroscopy was used to analyze the composition of the groups in diesel fuels, and those in jet fuels were evaluated using the molecular data obtained from published literature. The MFG surrogates were experimentally evaluated in an ignition quality tester (IQT), wherein ignition delay times (IDT) and derived cetane number (DCN) were measured. Physical properties, namely, average molecular weight (AMW) and density, and thermochemical properties, namely, heat of combustion and H/C ratio were also compared. The results show that the MFG surrogates were able to reproduce the combustion properties of the above fuels, and we demonstrate that fewer species in surrogates can be as effective as more complex surrogates. We conclude that the MFG approach can radically simplify the surrogate formulation process, significantly reduce the cost and time associated with the development of chemical kinetic models, and facilitate surrogate testing.  相似文献   

11.
An in-depth understanding of fuel additives chemical effects is crucial for optimal use or additive design dedicated to more efficient and cleaner combustion. This study aims at investigating the effect of an organometallic octane booster additive named ferrocene on the combustion of a low-octane gasoline at engine-relevant conditions. Rapid compression machine experiments were carried out at 10 bar, from 675 to near 1000 K for stoichiometric (Φ = 1) and lean (Φ = 0.5) mixtures. The neat surrogate fuel was a blend of toluene and n-heptane whose research octane number was 84. The doping level of additive was set at 0.1% molar basis. Ferrocene does not show a remarkable effect on the 1st- stage ignition but presents a strong inhibiting effect on the main ignition of the surrogate fuel at both equivalence ratios. The inhibiting effect increases with temperature within the investigated range. The negative temperature coefficient (NTC) behavior of the surrogate fuel is enhanced by ferrocene. A kinetic model developed by literature data assembly as well as a novel sub-mechanism involving the formation of alcohols from the reactions of iron species is proposed. The kinetic model developed simulates the inhibiting effect of ferrocene reasonably well at both equivalence ratios. Thanks to the validated kinetic model, the chemical effect of ferrocene on the fuel combustion is explored and compared with 2-ethylhexyl nitrate (EHN), which is a conventional reactivity enhancer. Three major differences between the two additives were identified: the high-temperature stability of the fuel additive, the influence of additive on the toluene reactivity and the effect of the additive on the NTC behavior. The results presented in this study contribute to the in-depth comprehension of chemical effect of two fuel additives (ferrocene and EHN) having opposite effects on fuel reactivity.  相似文献   

12.
One approach to enhancing the thermal efficiency of combustion systems is to burn fuels at ultra-lean conditions (equivalence ratio below 0.5). It has been recently reported that the auto-ignition of some hydrocarbon fuels, under specific temperature, pressure, and mixture conditions, releases heat in three distinctive stages. The three auto-ignition stages can be divided as a first low-temperature auto-ignition stage with conventional low temperature, and a high-temperature stage separated into two sub-stages. This study presents ignition delay time measurements of n-heptane and methyl-cyclohexane (MCH) mixtures in a flat piston rapid compression machine (RCM) under ultra-lean conditions. It provides experimental evidence of three-stage auto-ignition. This phenomenon of delayed high-temperature heat release is seldom reported in the literature and this is the first time to be reported for these types of fuels. The experiments cover two binary n-heptane/MCH mixtures of 15/85 and 70/30 by volume, pressures of 11 bar and 16 bar, temperature range of 700 to 900 K, and equivalence ratio of 0.4. The RCM optical access was utilized for high-speed chemiluminescence imaging. Detailed chemical kinetic simulations in a homogenous batch reactor with variable volume were conducted to further interrogate the three-stage auto-ignition phenomenon. Chemiluminescence shows that three-stage auto-ignition occurs in the adiabatically compressed end-gas, which indicates that this phenomenon is chemically-driven and is not induced by a thermal stratification in the RCM experiments. The model predicts the features of three-stage auto-ignition, which were experimentally observed at temperatures approximately below 750 K. As expected, significant discrepancies are observed in the ignition delays of experiment and simulation in the negative temperature coefficient (NTC) region. The simulation of the n-heptane/MCH 70/30 mixture shows better agreement with experiments in the Positive Temperature Coefficient (PTC) region compared to the 15/85 mixture.  相似文献   

13.
Ignition delay times (IDT) for high-octane-number gasolines and gasoline surrogates were measured at very high pressures behind reflected shock waves. Fuels tested include gasoline, gasoline with oxygenates, and two surrogate fuels, one dominated by iso-octane and one by toluene. RON/MON for the fuels varied from 101/94 to 106.5/91.5. Measurements were conducted in synthetic air at pressures from 30 to 250 atm, for temperatures from 700 to 1100 K, and equivalence ratios near 0.85. Results were compared with a recent gasoline mechanism of Mehl et al. (2017). IDT measurements of the iso-octane-dominated surrogate were very well reproduced by the model over the entire pressure and temperature range. IDT measurements for the toluene-dominated surrogate were also reproduced by the model to a lesser extent. By contrast, IDT measurements for the neat gasoline and gasoline with oxygenates, show excellent agreement with the trends of the Mehl et al. model only below 900 K. Above 900 K, the model returned IDT values for the two gasolines that were approximately 1.6× the measured values. Finally, we observed that IDT measurements for the toluene-dominated surrogate fuel and the two gasolines, near 70 atm and below 900 K, appeared to be shortened, possibly by non-homogeneous ignition or non-ideal gas processes. This dataset provides a critically needed set of IDT targets to test and refine boosted gasoline models at high pressures.  相似文献   

14.
Shock tube ignition delay times were measured for DF-2 diesel/21% O2/argon mixtures at pressures from 2.3 to 8.0 atm, equivalence ratios from 0.3 to 1.35, and temperatures from 900 to 1300 K using a new experimental flow facility, an aerosol shock tube. The aerosol shock tube combines conventional shock tube methodology with aerosol loading of fuel-oxidizer mixtures. Significant efforts have been made to ensure that the aerosol mixtures were spatially uniform, that the incident shock wave was well-behaved, and that the post-shock conditions and mixture fractions were accurately determined. The nebulizer-generated, narrow, micron-sized aerosol size distribution permitted rapid evaporation of the fuel mixture and enabled separation of the diesel fuel evaporation and diffusion processes that occurred behind the incident shock wave from the chemical ignition processes that occurred behind the higher temperature and pressure reflected shock wave. This rapid evaporation technique enables the study of a wide range of low-vapor-pressure practical fuels and fuel surrogates without the complication of fuel cracking that can occur with heated experimental facilities. These diesel ignition delay measurements extend the temperature and pressure range of earlier flow reactor studies, provide evidence for NTC behavior in diesel fuel ignition delay times at lower temperatures, and provide an accurate data base for the development and comparison of kinetic mechanisms for diesel fuel and surrogate mixtures. Representative comparisons with several single-component diesel surrogate models are also given.  相似文献   

15.
Experimental and numerical studies are carried out to construct surrogates that can reproduce selected aspects of combustion of gasoline in non premixed flows. Experiments are carried out employing the counterflow configuration. Critical conditions of extinction and autoignition are measured. The fuels tested are n-heptane, iso-octane, methylcyclohexane, toluene, three surrogates made up of these components, called surrogate A, surrogate B, and surrogate C, two commercial gasoline with octane numbers (ON) of 87 and 91, and two mixtures of the primary reference fuels, n-heptane and iso-octane, called PRF 87 and PRF 91. The combustion characteristics of the commercial gasolines, ON 87 and ON 91, are found to be nearly the same. Surrogate A and surrogate C are found to reproduce critical conditions of extinction and autoignition of gasoline: surrogate C is slightly better than surrogate A. Numerical calculations are carried out using a semi-detailed chemical-kinetic mechanism. The calculated values of the critical conditions of extinction and autoignition of the components of the surrogates agree well with experimental data. The octane numbers of the mixtures PRF 87 and PRF 91 are the same as those for the gasoline tested here. Experimental and numerical studies show that the critical conditions of extinction and autoignition for these fuels are not the same as those for gasoline. This confirms the need to include at least aromatic compounds in the surrogate mixtures. The present study shows that the semi-detailed chemical-kinetic mechanism developed here is able to predict key aspects of combustion of gasoline in non premixed flows, although further kinetic work is needed to improve the combustion chemistry of aromatic species, in particular toluene.  相似文献   

16.
Propanol and butanol isomers have received significant research attention as promising fuel additives or neat biofuels. Robust chemical kinetic models are needed that can provide accurate and efficient predictions of combustion performance across a wide range of engine relevant conditions. This study seeks to improve the understanding of ignition and combustion behavior of pure C3-C4 linear and iso-alcohols, and their blends with gasoline at engine-relevant conditions. In this work, a kinetic model with improved thermochemistry and reaction kinetics was developed based on recent theoretical calculations of H-atom abstraction and peroxy radical reaction rates. Kinetic model validations are reported, and the current model reproduces the ignition delay times of the C3 and C4 alcohols well. Variations in reactivity over a wide range of temperatures and other operating conditions are also well predicted by the current model. Recent ignition delay time measurements from a rapid compression machine of neat iso-propanol and iso-butanol [Cheng et al., Proc. Combust Inst. (2020)] and blends with a research grade gasoline [Goldsborough et al., Proc. Combust Inst. (2020)] at elevated pressure (20–40 bar) and intermediate temperatures (780–950 K) were used to demonstrate the accuracy of the current kinetic model at conditions relevant to boosted spark-ignition engines. The effects of alcohol blending with gasoline on the autoignition behavior are discussed. The current model captures the suppression of reactivity in the low-temperature and negative-temperature-coefficient (NTC) region when either isopropanol and isobutanol are added to a research grade gasoline. Sensitivity and reaction flux analysis were performed to provide insights into the relevant fuel chemistry of the C3-C4 alcohols.  相似文献   

17.
SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.  相似文献   

18.
Ignition-delay times were measured in shock-heated gases for a surrogate gasoline fuel comprised of ethanol/iso-octane/n-heptane/toluene at a composition of 40%/37.8%/10.2%/12% by liquid volume with a calculated octane number of 98.8. The experiments were carried out in stoichiometric mixtures in air behind reflected shock waves in a heated high-pressure shock tube. Initial reflected shock conditions were as follows: Temperatures of 690-1200 K, and pressures of 10, 30 and 50 bar, respectively. Ignition delay times were determined from CH chemiluminescence at 431.5 nm measured at a sidewall location. The experimental results are compared to simulated ignition delay times based on detailed chemical kinetic mechanisms. The main mechanism is based on the primary reference fuels (PRF) model, and sub-mechanisms were incorporated to account for the effect of ethanol and/or toluene. The simulations are also compared to experimental ignition-delay data from the literature for ethanol/iso-octane/n-heptane (20%/62%/18% by liquid volume) and iso-octane/n-heptane/toluene (69%/17%/14% by liquid volume) surrogate fuels. The relative behavior of the ignition delay times of the different surrogates was well predicted, but the simulations overestimate the ignition delay, mostly at low temperatures.  相似文献   

19.
Pre-ignition is an undesirable ignition event that affects chemical kinetic measurements in chemical reactors. Meanwhile, it appears randomly in engineering systems and is highly relevant to the soft knock or much stronger and detrimental super-knock in modern downsized engines. Currently its origins are still not fully understood. In this study, the role of turbulence in pre-ignition phenomena was experimentally investigated using a novel rapid compression machine. Different turbulent flow fields were achieved through calibrated orifice plates. Stoichiometric isooctane/air mixtures were tested under engine-relevant conditions in a target pressure range of 15–50 bar and a temperature range of 720–860 K. Useful insights into pre-ignition mechanism were obtained by combining instantaneous pressure acquisition with simultaneously recorded high-speed imaging. The experimental results demonstrate that owning to turbulent mixing with colder boundary layers, ignition timing is delayed when compared to ideal homogeneous compression ignition scenarios. However, pre-ignition phenomena can still be observed and become pronounced at lower target pressures with longer ignition delays. Moreover, pre-ignition formation can be characterized by single or multiple spherical flame kernels, distributed discretely inside core mixture or at near-wall regions. Different from the auto-ignition scenarios dominated by the chemical reactivity of test mixture, these pre-ignition flame kernels feature standard deflagration propagation. Finally, a dimensionless scaling analysis shows that pre-ignition formation is closely associated with turbulent length scale and laminar flame thickness.  相似文献   

20.
Propagation of a confined spherically expanding flame induces isentropic compression that can culminate in autoignition and/or detonation under conducive thermodynamic conditions. This relatively simple technique measures a distinct ‘characteristic ignition delay time’ and complements other established approaches such as the rapid compression machine and shock tube. The present study details this methodology by examining the autoignition characteristics of dimethyl-ether/oxygen/nitrogen/helium reactive mixtures for equivalence ratios of 0.6 and 0.9, an initial temperature of 468 K, and initial pressures of 3 to 6 atm. The experimental results display the classic two-stage ignition typical of dimethyl-ether oxidation at low-temperatures with first-stage ignition occurring at approximately 3.6 times the initial pressure. To aid in the interpretation of the experimental results, two numerical models were used: a zero-dimensional batch reactor model, which accepts experimental pressure-time history and calculates the sensitivities of characteristic ignition delay times to kinetics, and a low Mach number, Lagrangian one-dimensional code that was developed to model both flame propagation and end-gas autoignition. Simulation results were shown to adequately capture the physics of unsteady flame propagation, end-gas autoignition, and the controlling reactions of the latter. It was found also that under certain conditions the behavior of first and second ignition stages could be modified by unsteady pressure effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号