首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Photoresponsive polyamides containing main‐chain pentamethylated norbornadiene (NBD) moieties are obtained in quantitative yields via the Yamazaki–Higashi reaction between a pentamethylated NBD dicarboxylic acid and a series of aromatic diamines. Chemical structures are confirmed by 1H and 13C NMR and weight average molar masses measured by SEC are in the range of 21,500–28,600 g mol?1 with chain dispersities close to 2. Physical properties are investigated by FTIR, differential scanning calorimetry (DSC), thermogravimetric analysis, and viscosimetry. All obtained polyamides are amorphous with glass transition temperatures ranging from 68 to 124 °C. They are soluble at room temperature in common organic solvents and exhibit good thermal stabilities with Td10 values ranging from 175 to 276 °C. The photochemical isomerization of the NBD moiety into quadricyclane (QC) is studied by UV/vis spectroscopy after sunlight irradiation of polymer films. For all polyamides, a first‐order kinetic rate is observed for the conversion of NBD to QC. The thermal release of the stored energy associated to the reverse transformation of QC groups into NBD ones is about 90–95 kJ mol?1 as measured by DSC of the irradiated polymer films. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 4650–4656  相似文献   

2.
The effect of the copolymerization temperature and amount of comonomer in the copolymerization of ethylene with 1,3‐cyclopentadiene, dicyclopentadiene, and 4‐vinyl‐1‐cyclohexene and the rac‐Et[Ind]2ZrCl2–methylaluminoxane metallocene system was studied. The amount of comonomer present in the reaction media influenced the catalytic activity. Dicyclopentadiene was the most reactive comonomer among the cyclic dienes studied. In general, copolymers synthesized at 60 °C showed higher catalytic activities. Ethylene–dicyclopentadiene copolymers with high comonomer contents (>9%) did not show melting temperatures. 1,3‐Cyclopentadiene dimerized into dicyclopentadiene during the copolymerization, giving a terpolymer of ethylene, cyclopentadiene, and dicyclopentadiene. A complete characterization of the products was carried out with 1H NMR, 13C NMR, heteronuclear chemical shift correlation, differential scanning calorimetry, and gel permeation chromatography. © 2002 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 471–485, 2002; DOI 10.1002/pola.10133  相似文献   

3.
Seven cyclolinear polymers bearing the tertiary‐butyl α‐(hydroxymethyl)acrylate (TBHMA) ether dimer were prepared using reversible addition–fragmentation chain transfer (RAFT) polymerization. Of the seven polymers, five were cyclolinear homopolymers of the TBHMA ether dimer with different degrees of polymerization, one was an “arm‐first” star homopolymer, and the other was an amphiphilic linear copolymer based on the positively ionizable hydrophilic 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and the TBHMA ether dimer. For comparison, two more polymers were prepared using RAFT polymerization where the TBHMA ether dimer was replaced by tertiary‐butyl methacrylate (tBuMA). In particular, an amphiphilic linear DMAEMA–tBuMA diblock copolymer and a tBuMA arm‐first star homopolymer were also synthesized. All polymers were characterized in terms of their molecular weights and composition using gel permeation chromatography and 1H NMR spectroscopy, respectively. Subsequently, the tertiary‐butyl groups of the TBHMA ether dimer units and those of the tBuMA units were cleaved by hydrolysis to yield carboxylic acid groups. The successful removal of the tertiary‐butyl groups was confirmed using 1H and 13C NMR and attenuated total reflectance‐Fourier transform infrared spectroscopies. The hydrolyzed (co)polymers exhibited pK values of the carboxylic acid groups of around 4.5, and glass transition temperatures, Tg, of around 200 °C, which were 50 °C higher than those of their nonhydrolyzed precursors. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

4.
An Erratum has been published for this article in J. Polym. Sci. Part A: Polym. Chem. (2004) 42(21) 5559 . The initiator efficiency, f, of 2,2′‐azobis(isobutyronitrile) (AIBN) in dodecyl acrylate (DA) bulk free‐radical polymerizations has been determined over a wide range of monomer conversion in high‐molecular‐weight regimes (Mn ? 106 g mol?1 [? 4160 units of DA)] with time‐dependent conversion data obtained via online Fourier transform near infrared spectroscopy (FTNIR) at 60 °C. In addition, the required initiator decomposition rate coefficient, kd, was determined via online UV spectrometry and was found to be 8.4 · 10?6 s?1 (±0.5 · 10?6 s?1) in dodecane, n‐butyl acetate, and n‐dodecyl acetate at 60 °C. The initiator efficiency at low monomer conversions is relatively low (f = 0.13) and decreases with increasing monomer to polymer conversions. The evolution of f with monomer conversion (in high‐molecular‐weight regimes), x, at 60 °C can be summarized by the following functionality: f60 °C (x) = 0.13–0.22 · x + 0.25 · x2 (for x ≤ 0.45). The reported efficiency data are believed to have an error of >50%. The ratio of the initiator efficiency and the average termination rate coefficient, 〈kt±, (f/〈kt〉) has been determined at various molecular weights for the generated polydodecyl acrylate (Mn = 1900 g mol?1 (? 8 units of DA) up to Mn = 36,500 g mol?1 (? 152 units of DA). The (f/〈kt〉) data may be indicative of a chain length‐dependent termination rate coefficient decreasing with (average) chain length. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5170–5179, 2004  相似文献   

5.
Amphiphilic polymer networks consisting of hydrophilic poly(2‐hydroxyethyl methacrylate) (PHEMA) and hydrophobic polyisobutylene (PIB) chains were synthesized from a cationic copolymer of isobutylene (IB) and 3‐isopropenyl‐α,α‐dimethylbenzyl isocyanate (IDI) prepared at ?50 °C in dichloromethane in conjunction with SnCl4. The isocyanate groups of this random copolymer, PIB(NCO)n, were subsequently transformed in situ to methacrylate (MA) groups in the dibutyltin dilaurate‐catalyzed reaction with 2‐hydroxyethyl methacrylate (HEMA) at 30 °C. The resulting PIB(MA)n with number–average molecular weight 8200 and average functionality Fn ~ 4 per chain was in situ copolymerized radically with HEMA at 70 °C, giving rise to the amphiphilic networks containing 41 and 67 mol % HEMA. PHEMA–PIB network containing 43 mol % HEMA was also prepared by radical copolymerization of PIB(MA)n precursor with HEMA using sequential synthesis. An amphiphilic nature of the resulting networks was proved by swelling in both water and n‐heptane. PIB(NCO)n and PIB(MA)n were characterized by FTIR spectroscopy, SEC and the latter also by 1H NMR spectroscopy. Solid state 13C NMR spectroscopy was used for characterization of the resulting PHEMA–PIB networks. Whereas single glass‐transition temperature, Tg = ?67.4 °C, was observed for the rubbery crosslinked PIB prepared by reaction of PIB(NCO)n with water, the PHEMA–PIB networks containing 67 and 41 mol % HEMA showed two Tg's: ?70.4 and 102.7 °C, and ?63 and 107.2 °C, respectively. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2891–2900, 2006  相似文献   

6.
Several new poly(pyridinium salt)s with quinoline diamine moieties in their backbones with tosylate and triflimide counterion were prepared by either a ring‐transmutation polymerization reaction with bis(pyrylium tosylate) with a series of isomeric quinoline diamines in dimethyl sulfoxide (DMSO) for 48 h at 130–140 °C or a metathesis reaction of the tosylate polymers with lithium triflimide in DMSO at about 60 °C. Their chemical structures were confirmed by FTIR, 1H and 13C NMR spectroscopy, and elemental analysis. Their number‐average molecular weights (Mn) were in the range of 18,000–58,000, and their polydispersities were in the range of 1.12–1.53 as determined by gel permeation chromatography. They had thermal stability in the temperature range of 353–455 °C and glass‐transition temperatures >240 °C. They had good solubility in common organic solvents and were characterized with polarizing optical microscopy (POM) studies for their lyotropic liquid‐crystalline properties. Their light‐emission properties were examined by spectrofluorometry in both the solution and film states. Their quantum yields were also determined. Additionally, their morphologies in the thin‐film states and melt‐drawn fibers were examined with POM, scanning electron microscopy, and transmission electron microscopy techniques. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

7.
A series of copolyamides 12.y was synthesized either with y = 6, or 1,4‐cyclohexanedicarboxylic acid (1,4‐CHDA) residue, or a mixture of both. The influence of the synthetic route of 1,4‐CHDA containing polyamides on the obtained cis–trans ratio of the incorporated 1,4‐CHDA was investigated. The use of acid chlorides provided a synthetic route with full control of the cis–trans ratio of the 1,4‐CHDA residue during synthesis, whereas synthesis at elevated pressure and temperature caused isomerization. The content and cis–trans ratio of 1,4‐CHDA in the copolyamides were determined by solution 13C NMR spectroscopy. Increasing the degree of partial substitution of the adipic acid by 1,4‐CHDA resulted in an increase in Tm, even for low molar precentages of 1,4‐CHDA. This phenomenon points to isomorphous crystallization of both the 12.6 and 12.CHDA repeating units. The mps of the synthesized polyamides were independent of the initial cis–trans ratio of 1,4‐CHDA, provided that the samples were annealed at 300 °C before DSC analysis. The polyamides exhibited a different melting pattern depending on the 1,4‐CHDA content. At a low a 1,4‐CHDA content a net exothermic recrystallization occurred during melting, whereas at higher contents of 1,4‐CHDA this recrystallization occurs to a lesser extent, and two separate melting areas are observed. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 833–840, 2001  相似文献   

8.
This research was focused on the design and execution of new synthetic routes to low‐temperature‐curable poly(silarylene–siloxane)polyimides. The synthesis of individual oligoimide and silarylene–siloxane blocks was followed by hydrosilylation polymerization to produce crosslinked copolymers. The silarylene–siloxane and polyimide blocks were structurally characterized by IR and 1H NMR spectroscopy and size exclusion chromatography. The high‐temperature resistance of the copolymers was evaluated through the measurement of heat distortion temperatures (THD's) via thermomechanical analysis and by the determination of the weight loss at elevated temperatures via thermogravimetric analysis. Glass‐transition temperatures (Tg's) of the silarylene–siloxane segments were measured by differential scanning calorimetry. Hydrosilylation curing was conducted at 60 °C in the presence of chloroplatinic acid (H2PtCl6). The copolymers displayed both high‐temperature resistance and low‐temperature flexibility. We observed Tg of the silarylene–siloxane segment as low as ?77 °C and THD of the polyimide segment as high as 323 °C. The influence of various oligoimide molecular weights on the properties of copolymers containing the same silarylene–siloxane was examined. The effect of various silarylene–siloxane molecular weights on the properties of copolymers containing the same oligoimide was also examined. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 4922–4932, 2005  相似文献   

9.
A novel pentamethylated norbornadiene (NBD) based dianhydride, α,α′‐bis‐(3,4,5,6,7‐pentamethylcyclopenta‐2,4‐dienyl)meta‐xylene‐1,2‐dianhydride (3), was prepared from α,α′‐bis‐(pentamethylcyclopentadienyl)meta‐xylene (1) and acetylene dicarboxylic acid. The bis‐adduct formed via Diels–Alder reaction afforded tetra‐acid (2), which was chemically cyclodehydrated to lead the targeted dianhydride (3). New polyimides containing NBD moieties in the main chain were prepared from the dianhydride monomer (3) and various aromatic diamines. The chemical structure of the polymers was confirmed by both 1H and 13C NMR analysis. Their Molecular weights were also measured by SEC. All of these polyimides are soluble at room temperature in common organic solvents, such as chloroform, dichloromethane, THF, DMSO, DMF, and NMP, and show good thermal stabilities. The photochemical isomerization of the NBD into quadricyclane (QC) was investigated by UV/vis spectrophotometry from polymer films using visible sunlight as irradiation source. It was found that the kinetic rate of the conversion NBD‐QC which proceeded smoothly is a first kinetic order. The stored energies released by the transformation of QC groups into NBD ones of the irradiated polymer films were also evaluated by DSC measurement and were found to be around 90 kJ mol?1. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

10.
Copolymerization of ethylene with styrene, catalyzed by 1,4‐dithiabutanediyl‐linked bis(phenolato) titanium complex and methylaluminoxane, produced exclusively ethylene–styrene copolymers with high activity. Copolymerization parameters were calculated to be rE = 1.2 for ethylene and rS = 0.031 for styrene, with rE rS = 0.037 indicating preference for alternating copolymerization. The copolymer microstructure can be varied by changing the ratio between the monomers in the copolymerization feed, affording copolymers with styrene content up to 68%. The copolymer microstructure was fully elucidated by 13C NMR spectroscopy revealing, in the copolymers with styrene content higher than 50%, the presence of long styrene–styrene homosequences, occasionally interrupted by isolated ethylene units. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1908–1913, 2006  相似文献   

11.
The phase structure of a series of ethylene‐vinyl acetate copolymers has been investigated by solid‐state wide‐line 1H NMR and solid‐state high‐resolution 13C NMR spectroscopy. Not only the degree of crystallinity but the relative contents of the monoclinic and orthorhombic crystals within the crystalline region varied with the vinyl acetate (VA) content. Biexponential 13C NMR spin–lattice relaxation behavior was observed for the crystalline region of all samples. The component with longer 13C NMR spin–lattice relaxation time (T1) was attributed to the internal part of the crystalline region, whereas the component with shorter 13C NMR T1 to the mobile crystalline component was located between the noncrystalline region and the internal part of the crystalline region. The content of the mobile crystalline component relative to the internal part of the crystalline region increased with the VA content, showing that the 13C NMR spin–lattice relaxation behavior is closely related to the crystalline structure of the copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2199–2207, 2002  相似文献   

12.
D,L ‐3‐Methylglycolide (MG) was successfully polymerized with bimetallic (Al/Zn) μ‐oxo alkoxide as an initiator in toluene at 90 °C. The effect of the initiator concentration and monomer conversion on the molecular weight was studied. It is shown that the polymerization of MG follows a living process. A kinetic study indicated that the polymerization approximates the first order in the monomer, and no induction period was observed. 1H NMR spectroscopy showed that the ring‐opening polymerization proceeds through a coordination–insertion mechanism with selective cleavage of the acyl–oxygen bond of the monomer. On the basis of 1H NMR and 13C NMR analyses, the selective cleavage of the acyl–oxygen bond of the monomer mainly occurs at the least hindered carbonyl groups (P1 = 0.84, P2 = 0.16). Therefore, the main chain of poly(D,L ‐lactic acid‐co‐glycolic acid) (50/50 molar ratio) obtained from the homopolymerization of MG was primarily composed of alternating lactyl and glycolyl units. The diblock copolymers poly(ϵ‐caprolactone)‐b‐poly(D,L ‐lactic acid‐alt‐glycolic acid) and poly(L ‐lactide)‐b‐poly(D,L ‐lactic acid‐alt‐glycolic acid) were successfully synthesized by the sequential living polymerization of related lactones (ϵ‐caprolactone or L ‐lactide). 13C NMR spectra of diblock copolymers clearly show their pure diblock structures. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 357–367, 2001  相似文献   

13.
To synthesize polyesters and periodic copolymers catalyzed by nonafluorobutanesulfonimide (Nf2NH), we performed ring‐opening copolymerizations of cyclic anhydrides with tetrahydrofuran (THF) at 50–120 °C. At high temperature (100–120 °C), the cyclic anhydrides, such as succinic anhydride (SAn), glutaric anhydride (GAn), phthalic anhydride (PAn), maleic anhydride (MAn), and citraconic anhydride (CAn), copolymerized with THF via ring‐opening to produce polyesters (Mn = 0.8–6.8 × 103, Mn/Mw = 2.03–3.51). Ether units were temporarily formed during this copolymerization and subsequently, the ether units were transformed into esters by chain transfer reaction, thus giving the corresponding polyester. On the other hand, at low temperature (25–50 °C), ring‐opening copolymerizations of the cyclic anhydrides with THF produced poly(ester‐ether) (Mn = 3.4–12.1 × 103, Mw/Mn = 1.44–2.10). NMR and matrix‐assisted laser desorption/ionization time‐of‐flight mass spectra revealed that when toluene (4 M) was used as a solvent, GAn reacted with THF (unit ratio: 1:2) to produce periodic copolymers (Mn = 5.9 × 103, Mw/Mn = 2.10). We have also performed model reactions to delineate the mechanism by which periodic copolymers containing both ester and ether units were transformed into polyesters by raising the reaction temperature to 120 °C. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

14.
Butadiene‐isoprene copolymerization with the system V(acac)3‐MAO was examined. Crystalline or amorphous copolymers were obtained depending on isoprene content. Both butadiene and isoprene units exhibit a trans‐1,4 structure and are statistically distributed along the polymer chain. Polymer microstructure, comonomer composition, and distribution along the polymer chain were determined by 13C and 1H NMR analysis. The thermal and X‐ray behaviors of the copolymers were also investigated and compared with results from solid‐state 13C NMR experiments. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4635–4646, 2007  相似文献   

15.
Well‐defined PDMS telechelics having nitrobenzoxadiazole (NBD) fluorescent probes covalently attached at both chain‐ends were prepared in two steps and a series of fractionation procedures starting from commercially available divinyl‐terminated PDMS having a broad molar mass dispersity. First, thiol‐ene coupling between 6‐mercapto‐1‐hexanol and vinyl chain‐ends allowed the formation of dihydroxy‐terminated PDMS telechelics through the formation of a thioether linkage. The resulting material was then sequentially fractionated using dichloromethane/methanol mixtures to afford several well‐defined dihydroxy‐terminated PDMS fractions having sharp distributions of molar masses (Mn = 99.5–158 kDa and ? < 1.2). The NBD fluorescent probes were then attached at both chain‐ends by N,N′‐dicyclohexylcarbodiimide/4‐(dimethylamino)pyridine esterification coupling between the hydroxyl groups and 6‐(7‐nitrobenzofurazan‐4‐ylamino)hexanoic acid. The resulting fluorescent PDMS telechelics were characterized by SEC, 1H NMR, UV–visible, and fluorescence spectroscopies. These materials are suitable probes to investigate the dynamics of polymer chains in bulk or at interfaces by the fringe pattern fluorescent recovery after photobleaching technique. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

16.
A vinyl ether bearing a carbonate side group (2‐oxo‐1,3‐dioxolan‐4‐yl‐methyl vinyl ether, GCVE) was synthesized and copolymerized with various commercially available fluoroolefins [chlorotrifluoroethylene (CTFE), hexafluoropropylene (HFP), and perfluoromethyl vinyl ether (PMVE)] by radical copolymerization initiated by tert‐butyl peroxypivalate. Although HFP, PMVE, and vinyl ether do not homopolymerize under radical conditions, they copolymerized easily yielding alternating poly(GCVE‐alt‐F‐alkene) copolymers. These alternating structures were confirmed by elemental analysis as well as 1H, 19F, and 13C NMR spectroscopy. All copolymers were obtained in good yield (73–85%), with molecular weights ranging from 3900 to 4600 g mol?1 and polydispersities below 2.0. Their thermogravimetric analyses under air showed decomposition temperatures at 10% weight loss (Td,10%) in the 284–330°C range. The HFP‐based copolymer exhibited a better thermal stability than those based on CTFE and PMVE. The glass transition temperatures were in the 15–65°C range. These original copolymers may find potential interest as polymer electrolytes in lithium ions batteries. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

17.
We synthesized three partially deuterated polymer samples, namely a poly(ethylene‐alt‐propylene) (EP) alternating copolymer, a poly(styrene‐b‐EP) diblock copolymer (SEP) and a poly(styrene‐b‐EP‐b‐styrene) triblock copolymer (SEPS). The 2H spin–lattice relaxation time, T1, of EP soft segments above their glass transition temperature was measured by solid‐state 2H NMR spectroscopy. It was found that the block copolymers had a fast and a slow T1 component whereas EP copolymer had only a fast component. The fast T1 components for SEP and SEPS are similar to the T1 value of EP above ca 20°C. The slow T1 component for SEP and SEPS exhibited a minimum at 60°C and approached the value of the fast component near the Tg of polystyrene. The motional behavior of the EP units for SEP is similar to that of SEPS over the entire range of temperature. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

18.
Carboxylic acid chloride end‐functionalized all‐aromatic hyperbranched polyesters were prepared from the bulk polycondensation of the AB2 monomer 5‐(trimethylsiloxy)isophthaloyl dichloride. The acid chloride end functionality of the hyperbranched polyester was modified in situ with methanol and yielded methyl ester ends in a one‐pot process. Chain‐end functionalization and esterification were quantitative according to both potentiometric titration and 1H NMR analysis. The signals of 1H and 13C NMR spectra of the esterified hyperbranched polyester were fully assigned from model compounds of the focal, linear, dendritic, and terminal units. The degree of branching and molecular weight averages measured by 1H and 13C NMR spectroscopy and multidetector size exclusion chromatography increased systematically with increasing polymerization temperatures between 80 and 200 °C. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2855–2867, 2002  相似文献   

19.
The polymerization of norbornadiene (NBD) initiated by the 2‐chloro‐2,4,4‐trimethylpentane/titanium tetrachloride system was investigated. Efforts were made to develop conditions for the living polymerization of NBD by the use of proton trap and electron donor in the ?35 to ?60 °C range however this objective was only partially attained. The molecular weights increased linearly with conversion, and the rate was first‐order in confirmed monomer concentration up to approximately 25%; however, chain transfer became operational beyond this range. The microstructure of polynorbornadiene (PNBD) was investigated by high‐resolution 1H and 13C NMR spectroscopy. According to these techniques, the chain consisted of about equal amounts of exo/exo and exo/endo connected tricyclic repeat units. The head and tail groups were identified and quantitated, and this led to absolute molecular weight determination by integration. Molecular weights obtained by this method and by gel permeation chromatography (relative to polyisobutylene standards) were in good agreement. NMR spectroscopy indicated the presence of small but still identifiable amounts of branching units and their structures. The plot of the glass‐transition temperature against the reciprocal of the number‐average molecular weight was linear and yielded a glass‐transition temperature of 323 °C for the infinite molecular weight polymer. According to thermogravimetric analysis, PNBD was stable up to approximately 250 °C and showed a 5% weight loss at approximately 335 °C. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 732–739, 2003  相似文献   

20.
A significant improvement in the electroluminescence (EL) properties was observed for a poly{5‐methoxy‐2‐[(2′‐ethyl‐hexyl)‐oxy]‐p‐phenylenevinylene} (MEH–PPV)/poly(2,3‐diphenyl‐5‐octyl‐p‐phenylenevinylene) (DPO–PPV) blend after a thermal treatment at 200 °C for 2 h in vacuo to furnish the chemical bonding between polymer chains. 1H NMR spectroscopy and two‐photon excitation microscopy revealed that the chemical bonding turned the immiscible polyblend into a system more like a block copolymer with a vertically segregated morphology. Because both the lowest unoccupied molecular orbital and highest occupied molecular orbital levels of MEH–PPV in the wetting layer were higher than those of DPO–PPV in the upper layer, the heterojunction between the two layers of the polymers fit the category of so‐called type II heterojunctions. As a result, the turn‐on voltage of the polymer light‐emitting diode prepared with the thermally treated polyblend decreased to ~0.6 V, and the EL emission intensities and quantum efficiencies increased to about 4 times those of the untreated polyblend. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 62–69, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号