首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
A geometric nonlinear damping is proposed and applied to a quasi-zero stiffness (QZS) vibration isolator with the purpose of improving the performance of low-frequency vibration isolation. The force, stiffness and damping characteristics of the system are presented first. The steady-state solutions of the QZS system are obtained based on the averaging method for both force and base excitations and further verified by numerical simulation. The force and displacement transmissibility of the QZS vibration isolator are then analysed. The results indicate that increasing the nonlinear damping can effectively suppress the force transmissibility in resonant region with the isolation performance in higher frequencies unaffected. In addition, the application of the nonlinear damping in the QZS vibration isolator can essentially eliminate the unbounded response for the base excitation. Finally, the equivalent damping ratio is defined and discussed from the viewpoint of vibration control.  相似文献   

2.
In the present study, the concept of the output frequency response function is applied to theoretically investigate the force transmissibility of multi-degree of freedom (MDOF) structures with a nonlinear anti-symmetric viscous damping. The results reveal that an anti-symmetric nonlinear viscous damping can significantly reduce the transmissibility over all resonance regions for MDOF structures while it has almost no effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to overcome the dilemma in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant region but increases the transmissibility over non-resonant regions.  相似文献   

3.
In the present study, the Volterra series theory is adopted to theoretically investigate the force transmissibility of multiple degrees of freedom (MDOF) structures, in which an isolator with nonlinear anti-symmetric viscous damping is assembled. The results reveal that the anti-symmetric nonlinear viscous damping can significantly reduce the force transmissibility over all resonance regions for MDOF structures with little effect on the transmissibility over non-resonant and isolation regions. The results indicate that the vibration isolators with an anti-symmetric damping characteristic have great potential to solve the dilemma occurring in the design of linear viscously damped vibration isolators where an increase of the damping level reduces the force transmissibility over resonant frequencies but increases the transmissibility over non-resonant frequency regions. This work is an extension of a previous study in which MDOF structures installed on the mount through an isolator with cubic nonlinear damping are considered. The theoretical analysis results are also verified by simulation studies.  相似文献   

4.

Vibration isolation is one of the most efficient approaches to protecting host structures from harmful vibrations, especially in aerospace, mechanical, and architectural engineering, etc. Traditional linear vibration isolation is hard to meet the requirements of the loading capacity and isolation band simultaneously, which limits further engineering application, especially in the low-frequency range. In recent twenty years, the nonlinear vibration isolation technology has been widely investigated to broaden the vibration isolation band by exploiting beneficial nonlinearities. One of the most widely studied objects is the “three-spring” configured quasi-zero-stiffness (QZS) vibration isolator, which can realize the negative stiffness and high-static-low-dynamic stiffness (HSLDS) characteristics. The nonlinear vibration isolation with QZS can overcome the drawbacks of the linear one to achieve a better broadband vibration isolation performance. Due to the characteristics of fast response, strong stroke, nonlinearities, easy control, and low-cost, the nonlinear vibration with electromagnetic mechanisms has attracted attention. In this review, we focus on the basic theory, design methodology, nonlinear damping mechanism, and active control of electromagnetic QZS vibration isolators. Furthermore, we provide perspectives for further studies with electromagnetic devices to realize high-efficiency vibration isolation.

  相似文献   

5.
包含立方刚度和Bouc-Wen 型滞回的隔振系统具有复杂的非线性动力学特性。系统无阻尼响应模型可基于无滞回恢复力建立,利用谐波平衡法和泰勒展开求得近似解析解。系统有阻尼响应模型可利用解析/数值联合方法求解,该方法基于谐波平衡法和Levenberg-Marquardt 迭代算法,对于滞回产生的多值非光滑函数项,先计算时域响应再通过快速傅里叶变换求解谐波项系数。上述方法在含水平绞制梁的非线性隔振系统分析中得到有效应用。分析表明,在Bouc-Wen 型滞回和立方刚度的综合影响下,隔振系统呈现渐软–渐硬特性,滞回阻尼和线性阻尼都可以有效抑制共振,但前者高频隔振效果优于后者。  相似文献   

6.
A novel nonlinear structure with adjustable stiffness, damping and inertia is proposed and studied for vibration energy harvesting. The system consists of an adjustable-inertia system and X-shaped supporting structures. The novelty of the adjustable-inertia design is to enhance the mode coupling property between two orthogonal motion directions, i.e., the translational and rotational directions, which is very helpful for the improvement of the vibration energy harvesting performance. Weakly nonlinear stiffness and damping characteristics can be introduced by the X-shaped supporting structures. Combining the mode coupling effect above and the nonlinear stiffness and damping characteristics of the X-shaped structures, the vibration energy harvesting performance can be significantly enhanced, in both the low frequency range and broadband spectrum. The proposed 2-DOF nonlinear vibration energy harvesting structure can outperform the corresponding 2-DOF linear system and the existing nonlinear harvesting systems. The results in this study provide a novel and effective method for passive structure design of vibration energy harvesting systems to improve efficiency in the low frequency range.  相似文献   

7.
基于多自由度系统中的反共振特性,分别在传统线性隔振系统的上、下两层引入非线性倾斜弹簧负刚度机构,构成两自由度准零刚度隔振器。通过静态特性分析,推导出系统满足零刚度条件时,各参数之间的关系,分析了力学参数及结构参数对系统刚度特性的影响。建立两自由度准零刚度隔振系统的非线性动力学方程,利用平均法求解,推导出力传递率表达式,结合数值分析方法,探讨系统在不同的上、下层隔振器阻尼比、竖直刚度比及质量比情况下的力传递率特性,并与单自由度准零刚度隔振系统及线性斜弹簧两自由度准零刚度隔振系统进行对比研究。结果表明:当结构参数 (即:倾斜弹簧处于静平衡位置的长度与倾斜弹簧原长的比值)较小且倾斜弹簧为软化弹簧时,可在平衡位置附近获得较小的系统刚度及较大的低刚度区间;通过选择适当的上、下层隔振器阻尼比、竖直刚度比与质量比,可减小系统的起始隔振频率,增宽隔振频带,加快系统力传递率在特定频段内的衰减速率,改善系统的低频隔振性能。  相似文献   

8.
This study is concerned with the analysis and design of the force and displacement transmissibility of nonlinear viscous damper based vibration isolation systems. Analytical algorithms are derived using the Ritz–Galerkin method to evaluate the transmissibility of SDOF displacement vibration isolation and force vibration isolation systems where a nonlinear viscous damper is used as an energy dissipating device. The results reveal that compared to linear dampers, nonlinear viscous dampers can more significantly improve the system vibration isolation performance in a wider frequency range. A procedure is then proposed based on the analysis results to facilitate the design of nonlinear viscous dampers for system vibration isolation purposes. These results have significant implications for the design of vibration isolation systems in many engineering applications.  相似文献   

9.
The nonlinear behaviors and vibration reduction of a linear system with a nonlinear energy sink(NES)are investigated.The linear system is excited by a harmonic and random base excitation,consisting of a mass block,a linear spring,and a linear viscous damper.The NES is composed of a mass block,a linear viscous damper,and a spring with ideal cubic nonlinear stiffness.Based on the generalized harmonic function method,the steady-state Fokker-Planck-Kolmogorov equation is presented to reveal the response of the system.The path integral method based on the Gauss-Legendre polynomial is used to achieve the numerical solutions.The performance of vibration reduction is evaluated by the displacement and velocity transition probability densities,the transmissibility transition probability density,and the percentage of the energy absorption transition probability density of the linear oscillator.The sensitivity of the parameters is analyzed for varying the nonlinear stiffness coefficient and the damper ratio.The investigation illustrates that a linear system with NES can also realize great vibration reduction under harmonic and random base excitations and random bifurcation may appear under different parameters,which will affect the stability of the system.  相似文献   

10.
This research aims to predict the damping parameters of hysteresis damper based on an analytical rheological–dynamical (RDA) visco-elasto-plastic solution of one-dimensional longitudinal continuous vibrations of a bar. A visco-elasto-plastic bar or damper is an energy dissipation device. An attempt is made to estimate quantitatively the influence of material physical parameters of materials on the damping ratio in both the linear visco-elastic analysis and the nonlinear visco-elasto-plastic analysis of damper subjected to external vibration forces. Two types of damping are considered: viscous damping in the case of linear analysis, defined as stiffness and/or mass proportional and, in the case of nonlinear analysis, hysteresis damping caused by inelastic deformations of damper. Owing to the visco-elastic nature of the materials of the damper and the frequency dependence of the viscous damping ratio ξ, it is useful to consider separately the situations arising when ξ is positive (the system is stable) and when it is negative. A negative damping ratio means that the complementary solution of the response would not die away (the system is unstable because of factor eξ · ω · t). In the case of nonlinear analysis, the force–displacement relation is nonlinear, so it is very difficult to predict the actual damping and stiffness coefficients, even if the force–displacement characteristic is simply perfect elasto-plastic. Using the RDA method, which takes into account the rate of release of visco-elasto-plastic energy of the dissipation devices; nonlinear behaviors are linearized, enabling to obtain the equivalent damping and stiffness coefficients and the effective period for the damper.  相似文献   

11.
针对弹性多孔金属橡胶非线性迟滞特性力学行为,将迟滞恢复力-位移曲线分解为非线性单值曲线和椭圆,并将等效阻尼理论用于动态力学性能参数识别,从而建立了一种新型的适用于黏弹性阻尼材料的宏观唯象力学模型。采用不同相对密度的环形金属橡胶进行动态实验测试,以验证理论模型的准确性,结果表明该模型可将具有非线性特性的金属橡胶系统进行降阶处理,提高金属橡胶力学模型的预测效率,并能很好地描述金属橡胶的迟滞力学行为。另外,研究了在不同激励频率条件下金属橡胶的阻尼耗能特性。实验结果表明:在高频加载的条件下,黏性阻尼系数对动态加载频率不敏感,阻尼耗能与加载幅值之间呈线性正相关。基于等效阻尼理论的弹性迟滞力学模型具有一定的普适性,可进一步推广应用于类似弹性多孔材料的力学性能表征,为其工程应用提供理论基础。  相似文献   

12.
In the present study, the concept of the Output Frequency Response Function (OFRF), recently proposed by the authors, is applied to theoretically investigate the force transmissibility of MDOF structures with a cubic non-linear viscous damping device. The results analytically show that the introduction of cubic non-linear damping can significantly reduce the transmissibility over all resonance regions for a Multiple Degree of Freedom (MDOF) structure and at the same time leave the transmissibility over the isolation region virtually unaffected. The analysis also indicates that a strong linear damping may shift the system resonances and compromise the beneficial effects of cubic non-linear viscous damping on the force transmissibility of MDOF structures. This suggests that a less significant linear damping together with a strong cubic non-linear damping can be used in MDOF structures to achieve a desired vibration isolation performance. This research work has a significant implication for the design of viscously damped MDOF structures for a wide range of practical applications.  相似文献   

13.
Quasi-zero-stiffness(QZS) vibration isolators have been widely studied,because they show excellent high static and low dynamic stiffnesses and can effectively solve low-frequency and ultralow-frequency vibration. However, traditional QZS(T-QZS)vibration isolators usually adopt linear damping, owing to which achieving good isolation performance at both low and high frequencies is difficult. T-QZS isolators exhibit hardening stiffness characteristics, and their vibration isolation performance is e...  相似文献   

14.
By a special layout of the damper in a vibration isolation system, the velocity-nth power damping of the damper can be transformed into the velocity-displacement dependent damping in the moving direction due to geometric nonlinearity. This study is mainly concerned with the mechanism of this geometric nonlinear damping and tries to find some guidelines for designing isolators with high performance, regardless of the isolator is passive or active. The model used in this study is an unconstrained two-degree-of-freedom isolation system, which is suitable for investigating vibration isolation in space vehicles. The motion equation is solved by the averaging method to obtain the amplitude–frequency equation. The influence of damping coefficients on the force transmissibility is analyzed. Results show that this kind of damping has some advantages in improving isolation performance at both the resonance and higher frequencies. Meanwhile, it can also degrade the isolation performance if unreasonable parameters are chosen.  相似文献   

15.
Nonlinear damping suspension is a promising method to be used in a rotor-bearing system for vibration isolation between the bearing and environment. However, the nonlinearity of the suspension may influence the stability of the rotor-bearing system. In this paper, the motions of a flexible rotor in short journal bearings with nonlinear damping suspension are studied. A computational method is used to solve the equations of motion, and the bifurcation diagrams, orbits, Poincaré maps, and amplitude spectra are used to display the motions. The results show that the effect of the nonlinear damping suspension on the motions of the rotor-bearing system depends on the speed of rotor: (a) For low speeds, the rotor- bearing system presents the same motion pattern under the nonlinear damping ( \(p=0.5, 2, 3\) ) suspension as for the linear damping ( \(p=1\) ) suspension; (b) For high speeds, the effect of nonlinear damping depends on a combination of the damping exponent and damping coefficient. The square root damping model ( \(p=0.5\) ) shows a wider stable speed range than the linear damping for large damping coefficients. The quadratic damping ( \(p=2\) ) shows similar results to linear damping with some special damping coefficients. The cubic damping ( \(p=3\) ) shows more stable response than the linear damping in general.  相似文献   

16.
A novel vibration isolation device called the nonlinear energy sink(NES)with Ni Ti NOL-steel wire ropes(Ni Ti-ST) is applied to a whole-spacecraft system. The Ni Ti-ST is used to describe the damping of the NES, which is coupled with the modified Bouc-Wen model of hysteresis. The NES with Ni Ti-ST vibration reduction principle uses the irreversibility of targeted energy transfer(TET) to concentrate the energy locally on the nonlinear oscillator, and then dissipates it through damping in the NES with Ni Ti-ST.The generalized vibration transmissibility, obtained by the root mean square treatment of the harmonic response of the nonlinear output frequency response functions(NOFRFs),is first used as the evaluation index to analyze the whole-spacecraft system in the future.An optimization analysis of the impact of system responses is performed using different parameters of NES with Ni Ti-ST based on the transmissibility of NOFRFs. Finally, the effects of vibration suppression by varying the parameters of Ni Ti-ST are analyzed from the perspective of energy absorption. The results indicate that NES with Ni Ti-ST can reduce excessive vibration of the whole-spacecraft system, without changing its natural frequency. Moreover, the NES with Ni Ti-ST can be directly used in practical engineering applications.  相似文献   

17.
电流变阻尼器的动态特性实验研究   总被引:7,自引:0,他引:7  
设计制造了一种多层滑动极板式电流变阻尼器,使用自制的电流变液,采用正弦激励,进行了这种电流变阻尼器的阻尼特性试验。研究了电流变阻尼器的载荷-位移迟滞特性和载荷-速率迟滞特性,同时研究分析了这种电流变阻尼器的周期能耗特性及等效粘性阻尼特性。结果表明,阻尼器的周期能耗量随外加电场强度的增加而增加,外加电场强度越大,阻尼器的等效阻尼系数越大。阻尼器的阻尼特性体现为库仑阻尼和粘性阻尼的组合,其中随外加电场强度可控的主要是库仑阻尼力,而且库仑阻尼力不仅与外加强度有关,也与阻尼器的运动速度有关。该阻尼器系统是一个强非线性系统,极板间电流变液在低剪切应变率时表现为Bingham塑性流体,在高剪切应变率时流变性态比较复杂,导致载荷-速率迟滞环出现多区域闭合现象。  相似文献   

18.
It can be learned that the equivalent viscous damping (EVD) ratio as a function of displacement ductility is a crucial parameter in the application of the displacement based method. A set of generalized expressions are proposed herein for estimating the EVD ratio for individual and multiple reinforced concrete (RC) members. For individual RC members under seismic loads, the EVD ratio was derived based on their hysteretic response and hysteretic energy dissipated under fully reversed cyclic loading. Because of the nature of blast loads only the energy dissipated up to maximum displacement was considered to estimate the EVD ratio for individual RC members under blast loads. For multiple degree of freedom systems consisting of RC members, the EVD ratio was derived based on equating the total energy dissipated in the system to the sum of the energy dissipated by its individual members. Analytical studies presented here and elsewhere indicate that the EVD ratio is highly dependent on the damaged displacement ductility, which can be directly correlated to damage. These analytical results along with the expressions to compute the EVD ratio for RC members under seismic and blast loads are presented and discussed in this paper.  相似文献   

19.
Different kinds of modal synthesis method have been used widely in dynamic analysis of linear structure systems, but, in general, they are not suitable for nonlinear systems.In this paper, a kind of modal synthesis techniques is extended to dynamic analysis of nonlinear systems. The procedure is based upon the method suggested in [20],[21], which is applicable to vibration analysis for complex structure systems with coupling attachments but with simplified forms of linear springs and dampers. In fact, these attachments have nonlinear characteristics as those generally known to the cases of nonlinear elasticity and nonlinear damping, e.g., piecewise-linear springs, softening or hardening springs. Coulomb damping,elas-ioplastic hysteresis damping, etc. So long as the components of structure are still linear systems, we can get a set of independent free-interface normal mode information hut only keep the lower-order for each component. This can be done by computations or experiments or both. The global equations of linear vibration are set up by assembling of the component equations of motion with nonlinear coupling forces of attachments. Then the problem is reduced to less degrees of freedom for solving nonlinear equations. Thus considerable saving in computer storage and execution time can be expected. In the case of a very high-order system, if sufficient degrees of freedom are reduced, then it may be possible for the problem to be solved by the aid of a computer of ordinary grade.As the general nonlinear vibration of multiple degrees of freedom systems is quite involved, in general, the exact solution of a nonlinear system equations is not easy to find, so the numerical method can be adopted for solving the reduced nonlinear equations to obtain the transient response of system for arbitrary excitations.  相似文献   

20.
The dynamics of a system of coupled oscillators possessing strongly nonlinear stiffness and damping is examined. The system consists of a linear oscillator coupled to a strongly nonlinear, light attachment, where the nonlinear terms of the system are realized due to geometric effects. We show that the effects of nonlinear damping are far from being purely parasitic and introduce new dynamics when compared to the corresponding systems with linear damping. The dynamics is analyzed by performing a slow/fast decomposition leading to slow flows, which in turn are used to study transient instability caused by a bifurcation to 1:3 resonance capture. In addition, a new dynamical phenomenon of continuous resonance scattering is observed that is both persistent and prevalent for the case of the nonlinearly damped system: For certain moderate excitations, the transient dynamics “tracks” a manifold of impulsive orbits, in effect transitioning between multiple resonance captures over definitive frequency and energy ranges. Eventual bifurcation to 1:3 resonance capture generates the dynamic instability, which is manifested as a sudden burst of the response of the light attachment. Such instabilities that result in strong energy transfer indicate potential for various applications of nonlinear damping such as in vibration suppression and energy harvesting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号