首页 | 本学科首页   官方微博 | 高级检索  
     检索      


DYNAMIC CHARACTERISTICS OF VIBRATION ISOLATION SYSTEM WITH CUBIC STIFFNESS AND HYSTERESIS 1)
Authors:NIU Muqing  CHEN Liqun
Institution:School of Science, Harbin Institute of Technology in Shenzhen, Shenzhen 518055, Guangdong, China
Abstract:The vibration isolation system with cubic stiffness and Bouc-Wen type hysteresis shows complex nonlinear dynamic characteristics. An undamped response model is established based on an anhysteretic restoring force. An approximate analytical solution is derived by the harmonic balance method (HBM) and the Taylor expansion. An analytical/numerical method is proposed to calculate the damped response of the vibration isolation system, based on the HBM and Levenberg-Marquardt algorithm. For the multi-value non-smooth function terms, the harmonic term coefficients are obtained by applying the fast Fourier Transform for the calculated time-domain response. The proposed methods are applied to a nonlinear vibration isolation system with horizontal wire ropes. It is verified that the vibration isolation system has a softening-hardening stiffness with cubic stiffness and Bouc-Wen type hysteresis. Both hysteretic damping and linear damping can effectively suppress the resonance, while with the hysteretic damping, better vibration isolation performance is shown at high frequencies.
Keywords:nonlinear vibration isolation  hysteresis  Bouc-Wen model  harmonic balance method  
点击此处可从《力学与实践》浏览原始摘要信息
点击此处可从《力学与实践》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号