首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
Cassava bagasse was hydrolyzed using HCl and the hydrolysate was used for the production of xanthan gum using a bacterial culture of Xanthomonas campestris. Cassava bagasse hydrolysate with an initial concentration of approx 20 g of glucose/L proved to be the best substrate concentration for xanthan gum production. Among the organic and inorganic nitrogen sources tested to supplement the medium—urea, yeast extract, peptone, potassium nitrate, and ammonium sulfate—potassium nitrate was most suitable. Ammonium sulfate was the least effective for xanthan gum production, and it affected sugar utilization by the bacterial culture. In media with an initial sugar concentration of 48.6 and 40.4 g/L, at the end of fermentation about 30 g/L of sugars was unused. Maximum xanthan gum (about 14 g/L) was produced when fermentation was carried out with a medium containing 19.8 g/L of initial reducing sugars supplemented with potassium nitrate and fermented for 72 h, and it remained almost the same until the end of fermentation (i.e., 96 h).  相似文献   

2.
Panax ginseng hairy roots were transformed by Agrobacterium rhizogenes KTCT 2744. They showed an active branching pattern and fast growth in hormone-free medium, and good growth at 23°C, pH 5.8, 1/2 MS medium, and 3% sucrose. Sucrose provided the highest growth among seven carbon sources tested. Six complex media were also tested. In the combined sugar study, hairy roots grew better on sucrose without glucose or fructose than with glucose or fructose. In the 1/2 MS basal medium, 30 mM in nitrogen and 0.62 mM phosphate salt concentration was the optimum. The growth ratio was maximal at an inoculum size of 0.4% (w/v). Crude saponin and polysaccharide levels were also measured.  相似文献   

3.
The fermentation characteristics of Mortierella alpina were investigated in response to various nitrogen sources. Influences on nitrogen source and glucose uptake rate, mycelial morphology of M. alpina, and pH of medium in relation to different nitrogen sources were discussed. Effects of different nitrogen sources on cell growth, fatty acid composition, arachidonic acid (ARA), and total lipid concentration were also evaluated. It revealed that the maximum nitrogen source uptake ratio was obtained when corn steep liquor was used as nitrogen source. When yeast extract was used as the sole nitrogen source, glucose was completely exhausted at the end of fermentation. The maximum dry cell weight obtained from medium with yeast extract as nitrogen source had the highest total lipid concentration. Sodium nitrate was the favorable nitrogen source for ARA accumulation, and the highest ARA percentage in total fatty acids was obtained, 35.9%. Urea was identified as the favorable nitrogen source for ARA production, the highest ARA concentration obtained from urea was 5.8 g/l. Compared with inorganic nitrogen sources, organic nitrogen compounds are favorable for both cell growth and total lipids accumulation.  相似文献   

4.
The effects of various combinations of the two kinds of phytohormones, auxin and cytokinin, on cell growth and production of ginseng saponin and polysaccharide were investigated in suspension cultures ofPanax notoginseng. It was found that a high concentration of kinetin (KT) (7 mg/L) seriously inhibited cell growth, but that of benzyl adenine (BA) did not. Under 0.7 mg/L of cytokinin (i.e., KT and BA), 2,4-dichlorophenoxy acetic acid (2,4-D) at 0.2 mg/L was better for the cell cultures than that at 2 or 20 mg/L; and for both naphthalene acetic acid (NAA) and indole acetic acid (IAA), 20 mg/L was their best level for the cell cultures. The highest cell concentration of 11.9 g/L (by dry wt) was obtained with the combination of 0.2 mg/L of 2,4-D and 0.7 mg/L of BA. The highest saponin content of 13.9% was achieved under 2.0 mg/L IAA and 0.07 mg/L KT; its highest production, i.e., 1.13 g/L, was obtained at 0.2 mg/L of 2,4-D and 0.7 mg/L of KT. Under 20 mg/L NAA and 0.7 mg/L KT, the highest polysaccharide content and production were reached, i.e., 16.4% and 1.86 g/L, respectively. In this work, the effects of phytohormones onP. ginseng cell cultures were also studied. A high saponin production of 1.78 g/L was observed at 10 mg/L of indole butyric acid and 0.1 mg/L of BA, and the highest production of polysaccharide (1.95 g/L) was reached with the combination of 10 mg/L NAA and 0.1 mg/L KT.  相似文献   

5.
Kinetics of ethanol production from carob pods extract by immobilizedS. cerevisiae cells in static and shake flask fermentation have been investigated. Shake flask fermentation proved to be a better fermentation system for the production of ethanol than static fermentation. The optimum values of ethanol concentration, ethanol productivity, ethanol yield, and fermentation efficiency were obtained at pH range 3.5–6.5 and temperature between 30–35°C. A maximum ethanol concentration (65 g/L), ethanol productivity (8.3 g/Lh), ethanol yield (0.44 g/g), and fermentation efficiency (95%) was achieved at an initial sugar concentration of 200, 150, 100, and 200 g/L, respectively. The highest values of specific ethanol production rate and specific sugar uptake rate were obtained at pH 6.5, temperature 40°C, and initial sugar concentration of 100 g/L. Other kinetic parameters, biomass concentration, biomass yield, and specific biomass production rate were maximum at pH 5.5, temperature 30°C, and initial sugar concentration 150 g/L. Under the same fermentation conditions non-sterilized carob pod extract gave higher ethanol concentration than sterilized medium. In repeated batch fermentations, the immobilizedS. cerevisiae cells in Ca-alginate beads retained their ability to produce ethanol for 5 d.  相似文献   

6.
The influence of nitrogen and phosphate sources on the production of extracellular protease activity byStreptomyces clavuligerus has been investigated. The experiments were carried out in batch fermentation using soy-bean flour as nitrogen source and potassium phosphate dibasic as phosphate source. High protease yield was obtained after 24 h of fermentation with an initial pH of 7.0. The maximal protease activity (112.68 and 88.72 U/mg) was obtained the phosphate concentration of the 21 and 29 mM for strains 3585 and 644, respectively. With regard to the nitrogen concentration in both strains, the maximal protease activity was achieved with 0.5% (154.89 U/mg and 228.36 U/mg for 3585 and 644 strains, respectively). Enzyme production appeared to be modulated by an inducer system where ammonia, complex nitrogen, and phosphate sources might have been involved.  相似文献   

7.
The aim of this study is to optimize the lipid accumulation in microalgae by using two agricultural residues of pineapple peels and sugarcane bagasse as low-cost organic carbon sources. Green microalgae Scenedesmus acutus was isolated and selected for cultivation. Effects of three initial sugar concentrations and the stage for adding sugar during cultivation on biomass and lipid production were investigated. The results clearly showed that two-stage cultivation is more suitable than one-stage. The maximum biomass concentration and productivity were obtained at 3.85 g/L and 160.42 mg/L/day when sugarcane bagasse was used. The highest lipid content and lipid yield was reached at 28.05 % and 0.93 g/L when pineapple peels were used, while in the case of sugarcane bagasse, 40.89 % and 1.24 g/L lipid content and yield were obtained. Lipid content was found in normal condition (autotrophic) at 17.71 % which was approximately 2.13-fold lower than when sugarcane bagasse was used (40.89 %). Biodiesel production via in situ transesterification was also investigated; the main fatty acids of palmitic acid and oleic acid were found. This work indicates that using agricultural residues as organic carbon sources could be able to increase lipid content and reduce the cost of biofuel production.  相似文献   

8.
Search for efficient low-cost substrate/additives are gaining significant impetus in bacterial cellulose (BC) production. Makgeolli sludge (a traditional Korean wine distillery waste) is enriched with organic acid, alcohol, and sugar. Using makgeolli sludge filtrate (MSF) and Hestrin–Schramm (HS) medium (g/l of distilled water: glucose, 10.0; peptone, 5.0; yeast extract, 5.0; disodium phosphate, 2.7; citric acid, 1.15; pH 5.0), two different media—namely the modified HS media (ingredients of HS media except glucose dissolved in MSF) and mixed modified HS media (equal volume mixture of original and modified HS media)—were formulated. BC production with Gluconacetobacter xylinus was studied using the two above referred medium. Keeping HS medium as reference, effect of initial pH, glucose, ethanol, and organic acid concentration on BC production was also studied. It suggests that increasing initial glucose (up to 25 g/l) though improves BC production but results in poor BC yield above 15 g/l of glucose. However, addition of alcohol (up to 1%v/v) or citric acid (up to 20 mM) escalate productivity up to four and two times, respectively. In both modified HS media and mixed modified HS medium, BC production was four to five times higher than that of original HS medium. Even MSF alone surpassed HS medium in BC production. Scanning electron microscopy showed that BC microfibrils from MSF based media were several micrometers long and about 25–60 nm widths. X-ray diffraction patterns suggested the produced BC were of cellulose I polymorph.  相似文献   

9.
A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentrations. Maximal ethanol, cell, and glycerol concentrations were obtained when 103.1 g L−1 of initial sugar concentration was used. Cell yield (Y X/S) was calculated as 0.24 (g microorganism)/(g glucose + fructose) using cashew apple juice medium with 41.3 g L−1 of initial sugar concentration. Glucose was exhausted first, followed by fructose. Furthermore, the initial concentration of sugars did not influence ethanol selectivity. These results indicate that cashew apple juice is a suitable substrate for yeast growth and ethanol production.  相似文献   

10.
In the present preliminary study, we report results for the biocellulose nanofibres production by Gluconacetobacter xylinus. Production was examined by utilizing different feedstocks of single sugars and sugar mixtures with compositions similar to the acid hydrolyzates of different agriculture residues. Profiles for cell proliferation, sugar consumption, and the subsequent pH changes were thoroughly analyzed. Highest biocellulose production of 5.65 g/L was achieved in fructose medium with total sugar consumption of 95.57%. Moreover, the highest production using sugar mixtures was 5.2 g/L, which was achieved in feedstock with composition identical to the acid hydrolyzate of wheat straws. This represented the highest biocellulose yield of 17.72 g/g sugars compared with 14.77 g/g fructose. The lowest production of 1.1 and 1.75 g/L were obtained in xylose and glucose media, respectively, while sucrose and arabinose media achieved relatively higher production of 4.7 and 4.1 g/L, respectively. Deviation in pH of the fermentation broths from the optimum value of 4–5 generally had marked effect on biocellulose production with single sugars in feedstock. However, the final pH values recorded in the different sugar mixtures were ~3.3–3.4, which had lower effect on production hindrance. Analyzing profiles for sugars' concentrations and cell growth showed that large amount of the metabolized sugars were mainly utilized for bacterial cell growth and maintenance, rather than biocellulose production. This was clearly observed with single sugars of low production, while sugar consumption was rather utilized for biocellulose production with sugar mixtures. Results reported in this study demonstrate that agriculture residues might be used as potential feedstocks for the biocellulose nanofibres production. Not only this represents a renewable source of feedstock, but also might lead to major improvements in production if proper supplements and control were utilized in the fermentation process.  相似文献   

11.
Estimation of the optimal concentrations of residual sugar in medium for a fed-batch culture of Baker’s yeast has been studied and practiced. The concentrations, however, depended on different species and targets of the biomass, which was expected to be made. Kinetic changes of the residual phosphate salt in the medium conformed to a logarithmic process until the fourth hour during an 11-h culture. The parabolic method (see ref. 9 later in article) might be qualified to maintain the concentrations of residual sugar around 0.15 g/L. It was demonstrated that cell growth followed a sigmoid process during a fed-batch culture, because the cells consumed the nutrient with two metabolic pathways, one was for cell conversion and another was for non-cell conversion. With the parabolic method, we can estimate kinetics of cell growth and cell growth rate during the culture.  相似文献   

12.
The characteristics of ethanol production by immobilized yeast cells were investigated for both repeated batch fermentation and continuous fermentation. With an initial sugar concentration of 280?g/L during the repeated batch fermentation, more than 98% of total sugar was consumed in 65?h with an average ethanol concentration and ethanol yield of 130.12?g/L and 0.477?g ethanol/g consumed sugar, respectively. The immobilized yeast cell system was reliable for at least 10 batches and for a period of 28?days without accompanying the regeneration of Saccharomyces cerevisiae inside the carriers. The multistage continuous fermentation was carried out in a five-stage column bioreactor with a total working volume of 3.75?L. The bioreactor was operated for 26?days at a dilution rate of 0.015?h?1. The ethanol concentration of the effluent reached 130.77?g/L ethanol while an average 8.18?g/L residual sugar remained. Due to the high osmotic pressure and toxic ethanol, considerable yeast cells died without regeneration, especially in the last two stages, which led to the breakdown of the whole system of multistage continuous fermentation.  相似文献   

13.
Lactic acid production through cell-recycle repeated-batch bioreactor   总被引:1,自引:0,他引:1  
The effect of various nitrogen sources on cell growth and lactic acid production was investigated. The most effective nitrogen source was yeast extract; more yeast extract gave higher cell growth and lactic acid productivity. Yeast extract dosage and cell growth were proportional up to a yeast extract concentration of 30 g/L, and lactic acid productivity was linearly correlated up to a yeast extract dosage of 25 g/L. However, increasing the yeast extract content raises the total production cost of lactic acid. Therefore, we attempted to find the optimum yeast extract dosage for a repeated-batch operation with cell recycling. The results show that when using Enterococcus faecalis RKY1 only 26% of the yeast extract dosage for a conventional batch fermentation was sufficient to produce the same amount of lactic acid, whereas the lactic acid concentration in the product stream (92–94 g/L) and lactic acid productivity (6.03–6.20 g/[L·h]) were similar to those of a batch operation. Furthermore, long-term stability was established.  相似文献   

14.
Optimization of submerged culture conditions for the production of mycelial growth and exopolysaccharides (EPSs) by Collybia maculata was investigated. The optimum temperature and the initial pH for EPS production in a shake-flask culture of C. maculata were found to be 20°C and 5.5, respectively. Among the various medium’s constituents examined, glucose, Martone A-1, K2HPO4, and CaCl2 were the most suitable carbon, nitrogen, and mineral sources for EPS production, respectively. The optimum concentration of the medium’s ingredients determined using the orthogonal matrix method was as follows: 30 g/L of glucose, 20 g/L of Martone A-1, 1g/L of K2HPO4, and 1g/L of CaCl2. Under the optimized culture conditions, the maximum concentration of EPSs in a 5-L stirred-tank reactor was 2.4 g/L, which was approximately five times higher than that in the basal medium. A comparative fermentation result showed that the EPS productivity in an airlift reactor was higher than that in the stirred-tank reactor despite the lower mycelial growth rate. The specific productivities and the yield coefficients in the airlift reactor were higher than those in the stirred-tank reactor even though the volumetric productivities were higher in the stirred-tank reactor than in the airlift reactor.  相似文献   

15.
Different initial cell concentrations of a recombinant flocculent Saccharomyces cerevisiae MA-R4 were evaluated for their effects on xylose fermentation and glucose–xylose cofermentation. A high initial cell concentration greatly increased both the substrate utilization and ethanol production rates. During xylose fermentation, the highest rates of xylose consumption (2.58 g/L h) and ethanol production (0.83 g/L h) were obtained at an initial cell concentration of 13.1 g/L. During cofermentation, the highest rates of glucose consumption (14.4 g/L h), xylose consumption (2.79 g/L h), and ethanol production (6.68 g/L h) were obtained at an initial cell concentration of 12.7 g/L. However, a high initial cell density had no positive effect on the maximum ethanol concentration and ethanol yield mainly due to the increased amount of by-products including xylitol. The ethanol yield remained almost constant (0.34 g/g) throughout xylose fermentation (initial cell concentration range, 1.81–13.1 g/L), while it was slightly lower at high initial cell concentrations (9.87 and 12.7 g/L) during cofermentation. The determination of the appropriate initial cell concentration is necessary for the improvement of substrate utilization and ethanol yield.  相似文献   

16.
Carob pod: A new substrate for citric acid production by Aspergillus niger   总被引:1,自引:0,他引:1  
The production of citric acid from carob pod extract byA. niger in surface fermentation was investigated. A maximum citric acid concentration (85.5 g/L), citric acid productivity (4.07 g/L/d), specific citric acid production rate (0.18 g/g/d), and specific sugar uptake rate (0.358 g/g/d) was achieved at an initial sugar concentration of 200 g/L, pH of 6.5, and a temperature of 30°C. Other kinetic parameters, namely, citric acid yield, biomass yield, specific biomass production rate, and fermentation efficiency were maximum at pH 6.5, temperature 30°C, and initial sugar concentration 100 g/L. The external addition of methanol into the carob pod extract at a concentration up to 4% (v/v) improved the production of citric acid.  相似文献   

17.
The aim of this work was to reassess the effect of nitrogen limitation (from 0 to 1 mM nitrate), on the growth and the biochemical composition of Neochloris oleoabundans cultures, where only the CO2 available in the air was provided. Slight differences in the initial nitrate concentration, even minimal increments of 0.2 mM, significantly modify the microalgal response towards nitrogen limitation. This stress condition reduced cell proliferation, but increased cell mass values due to the simultaneous accumulation of two storage compounds: lipids, which contained up to a 55.9 % of total fatty acids; and carbohydrates, which may be primarily composed by starch. The highest biomass and lipid productivities of 98.24 and 43.24 mg/l/day, respectively, were attained at an initial nitrate concentration of 0.6 mM. The theoretical annual projection, based on these productivities, allowed the estimation of the liquid fuel energy yields, which are comparable or even higher than those calculated for several biomass feedstocks such as corn, oil palm, sugarcane, or even fast growing grasses, confirming the potential of nitrogen-limited N. oleoabundans biomass as an appropriate feedstock for biofuel purposes.  相似文献   

18.

A light diffusing optical fiber (LDOF) photobioreactor with an improved gas input system has been used for the high-density culture of a marine cyanobacterium Synechococcus sp. Optimum conditions for CO2 removal and biomass production were investigated. Maximum CO2 removal of 4.44 g/L/d was achieved using an initial cell concentration of 6.8 g/L. The biomass yield was 0.97 g/L for a 12-culture time. Continuous cultures, in which medium was filtered using a ceramic membrane module, showed enhanced growth, with a final cell concentration of 11.2 g/L. These results demonstrate the potential of LDOF photobioreactor units for CO2 removal and biomass production using marine cyanobacteria.

  相似文献   

19.
Scheffersomyces stipitis was cultivated in an optimized, controlled fed-batch fermentation for production of ethanol from glucose–xylose mixture. Effect of feed medium composition was investigated on sugar utilization and ethanol production. Studying influence of specific cell growth rate on ethanol fermentation performance showed the carbon flow towards ethanol synthesis decreased with increasing cell growth rate. The optimum specific growth rate to achieve efficient ethanol production performance from a glucose-xylose mixture existed at 0.1 h?1. With these optimized feed medium and cell growth rate, a kinetic model has been utilized to avoid overflow metabolism as well as to ensure a balanced feeding of nutrient substrate in fed-batch system. Fed-batch culture with feeding profile designed based on the model resulted in high titer, yield, and productivity of ethanol compared with batch cultures. The maximal ethanol concentration was 40.7 g/L. The yield and productivity of ethanol production in the optimized fed-batch culture was 1.3 and 2 times higher than those in batch culture. Thus, higher efficiency ethanol production was achieved in this study through fed-batch process optimization. This strategy may contribute to an improvement of ethanol fermentation from lignocellulosic biomass by S. stipitis on the industrial scale.  相似文献   

20.
To develop a cost-effective fermentation medium, spent brewer's yeast hydrolysate was evaluated as a nitrogen source for succinic acid production by Actinobacillus succinogenes NJ113 in glucose-containing media. Autolysis and enzymatic hydrolysis were used to hydrolyze the spent brewer's yeast cells to release the nutrients. The results showed that enzymatic hydrolysis was a more effective method due to the higher succinic acid yield and cell growth. However, the incomplete glucose consumption indicated existence of nutrient limitation. Vitamins were subsequently identified as the main limiting factors for succinic acid production using enzymatically hydrolyzed spent brewer's yeast as a nitrogen source. After the addition of vitamins, cell growth and succinic acid concentration both improved. As a result, 15 g/L yeast extract could be successfully replaced with the enzymatic hydrolysate of spent brewer's yeast with vitamins supplementation, resulting in a production of 46.8 g/L succinic acid from 68 g/L glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号