首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By dynamic viscoelastic measurement for PNIPAM/water solution it has been found that below the phase separation temperature (about 32 ℃), the system is homogeneous fluid; while upon being heated to about 32 ℃, the solution undergoes phase separation and the storage modulus G' increases sharply and exceeds the loss modulus G", indicating the physical network formation during the phase separation. Based on the percolation model, the gel points Tgel, were obtained by applying the dynamic scaling theory (DST) and winter's criterion. The critical exponent n was also obtained to be 0.79 through DST, which is different from 0.67, the critical point of chemically crosslinked network predicted through DST. The obtained n value reflects the special property of physical network being different from chemical network.  相似文献   

2.
Novel nanosized crystals of aquocyanophthalocyaninatocobalt (III) (Phthalcon 11) were used as a conductive filler in crosslinked epoxy materials. The crosslinked composite materials had a very low percolation threshold (φc ≈ 0.9 vol %). The relationship between the volume conductivity and the filler fraction follows the scaling law of the percolation theory and suggests that the conducting particle networks were formed by random percolation of primary aggregates. The occurrence of the low φc can be explained by the presence of a fractal Phthalcon 11 particle network formed from fractal aggregates during crosslinking. The position of the percolation threshold and the volume conductivity of these crosslinked materials were found to depend heavily on the processing conditions applied. These dependencies are explained in terms of specific particle–matrix interactions and the particle–particle interactions and by taking into account different mechanisms of particle network formation. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 33–47, 2006  相似文献   

3.
This paper addresses the kinetic behavior of random walks in fractal media. We perform extensive numerical simulations of both single and annihilating random walkers on several Sierpinski carpets, in order to study the time behavior of three observables: the average number of distinct sites visited by a single walker, the mean-square displacement from the origin, and the density of annihilating random walkers. We found that the time behavior of those observables is given by a power law modulated by soft logarithmic-periodic oscillations. We conjecture that logarithmic-periodic oscillations are a manifestation of a time domain discrete scale iNvariance (DSI) that occurs as a consequence of the spatial DSI of the substrate. Our conjecture implies that the logarithmic periods of oscillations in space and time domains are linked by a dynamic exponent z, through z=log(tau)/log(b(1)), where tau and b(1) are the fundamental scaling ratios of the DSI symmetry in the time and space domains, respectively. We use this relationship in order to compute z for different observables and fractals. Furthermore, we check the values obtained with independent measurements provided by the power-law behavior of the mean-square displacement with time [R(2)(t) proportional variant t(2/z)]. The very good agreement obtained between both computations of the z exponent gives strong support to the idea of an intimate interplay between spatial and time symmetry properties that we expect will have a quite general scope. We expect that the application of the outlined concepts in the field of dynamic processes in fractal media will stimulate further research.  相似文献   

4.
The present study aims at contributing to a complete understanding of the water-induced ionic charge transport in cellulose. The behavior of this transport in loosely compacted microcrystalline cellulose (MCC) powder was investigated as a function of density utilizing a new type of measurement setup, allowing for dielectric spectroscopy measurement in situ during compaction. The ionic conductivity in MCC was found to increase with increasing density until a leveling-out was observed for densities above approximately 0.7 g/cm3. Further, it was shown that the ionic conductivity vs density followed a percolation type behavior signifying the percolation of conductive paths in a 3D conducting network. The density percolation threshold was found to be between approximately 0.2 and 0.4 g/cm3, depending strongly on the cellulose moisture content. The observed percolation behavior was attributed to the forming of interparticulate bonds in the MCC and the percolation threshold dependence on moisture was linked to the moisture dependence of particle rearrangement and plastic deformation in MCC during compaction. The obtained results add to the understanding of the density-dependent water-induced ionic transport in cellulose showing that, at given moisture content, the two major parameters determining the magnitude of the conductivity are the connectedness of the interparticluate bonds and the connectedness of pores with a diameter in the 5-20 nm size range. At densities between approximately 0.7 and 1.2 g/cm3 both the bond and the pore networks have percolated, facilitating charge transport through the MCC compact.  相似文献   

5.
Clustering of water molecules in the hydration shells of spherical structureless solutes was studied in dependence on thermodynamic state, solute radius R(sp) and strength U(0) of water-solute interaction. Two qualitatively different clustering states of hydration water have been found: an "ordered" state with a hydrogen-bonded (H-bonded) network, which includes most of the hydration water, and a "disordered" state with small H-bonded clusters of hydration water. The transition from the ordered to disordered state occurs upon increasing temperature and decreasing pressure. This percolation transition is rounded due to the finite solute size and occurs in some temperature (pressure) interval. A finite-size scaling was applied to determine the transition temperature T(∞) in the limit R(sp)→∞. Strengthening of the water-solute interaction strongly enhances the stability of the ordered state: the transition temperature increases by about 35 °C, when U(0) decreases by 1 kcal mol(-1). At T > T(∞) and fixed U(0), the stability of the H-bonded water network increases upon decreasing solute size.  相似文献   

6.
The influence of poly(ethylene glycol)s additives viz. mono- (EG), di- (DEG), tri- (TEG), tetra- (TeEG) and poly(ethylene glycol)-400 (PEG-400) on temperature-induced electrical percolation of water/AOT/isooctane microemulsion system has been investigated. The composition of microemulsion systems has been kept constant to omega=22 and [additive] = 0.1 M w.r.t. dispersion medium. The effect of increase in the non-polar continuum (S= [Oil]/[AOT]) is indicated by increase in the percolation threshold, theta(c). The findings have been elaborated in terms of validity of scaling laws in the light of the dynamic percolation theory. The activation energy of the process, DeltaEp, has been estimated from Arrhenius plots. Pseudophase concept of the micellar aggregation has been utilized to assess the thermodynamics of clustering of the nanodroplets. The state of trapped water in the micellar core and the corresponding interactions with the AOT head group has been visualized through 1H NMR and FTIR analysis. Results show that at higher omega (>16.0), encapsulated water behaves like free or the bulk water.  相似文献   

7.
In this paper, the percolation of (a) linear segments of size k and (b) k-mers of different structures and forms deposited on a square lattice contaminated with previously adsorbed impurities have been studied. The contaminated or diluted lattice is built by randomly selecting a fraction of the elements of the lattice (either bonds or sites) which are considered forbidden for deposition. Results are obtained by extensive use of finite size scaling theory. Thus, in order to test the universality of the phase transition occurring in the system, the numerical values of the critical exponents were determined. The characteristic parameters of the percolation problem are dependent not only on the form and structure of the k-mers but also on the properties of the lattice where they are deposited. A phase diagram separating a percolating from a nonpercolating region is determined as a function of the parameters of the problem. A comparison between random site and random bond percolation in the presence of impurities on the lattice is presented.  相似文献   

8.
We present results on the percolation loci for chemical clusters and physical clusters of long lifespan. Chemical clusters are defined as sets of particles connected through particle-particle bonds that last for a given time tau. Physical clusters are sets of particles that remain close together at every instant for a given period of time tau. By using molecular dynamics simulations of a Lennard-Jones system we obtain the percolation loci at different values of tau as the lines in the temperature-density plane at which the system presents a spanning cluster in 50% of the configurations. We find that the percolation loci for chemical clusters shifts rapidly toward high densities as tau is increased. For moderate values of tau this line converges to the low-density branch of the liquid-solid coexistence curve. This implies that no stable chemical clusters can be found in the fluid phase. In contrast, the percolation loci for physical clusters tend to a limiting line, as tau tends to infinity, which is far from the liquid-solid transition line.  相似文献   

9.
研究了短碳纤维(Shortcarbonfiber,SCF)填充高密度聚乙烯(HDPE)导电复合体系的渗流(Percola-tion)与压阻行为(Piezoresistivebehavior,PRB),发现SCF经物理接触而形成的导电网络是复合材料导电的根源.体系的压阻行为呈现浓度依赖性.受压时SCF间隙的减小与渗流网络的局部破坏-重建过程随填料浓度、载荷大小和力学循环次数的变化而变化,导致PRB表现为电阻负压力系数(NPC)、电阻正压力系数(PPC)或两者兼有的现象.讨论了体系PRB的稳定性,发现由于HDPE基体的塑性永久形变,电阻-时间基线随着压缩循环的进行而发生漂移,多次循环可有效提高体系的压阻稳定性.  相似文献   

10.
11.
12.
In order to study rheological properties of gelling systems in dilute solution, we investigate the viscosity and the normal stresses in the Zimm model [B. H. Zimm, J. Chem. Phys. 24, 269 (1956)]. for randomly cross-linked monomers. The distribution of cluster topologies and sizes is assumed to be given either by Erdos-Renyi random graphs or three-dimensional bond percolation. Within this model the critical behavior of the viscosity and of the first normal stress coefficient is determined by the power-law scaling of their averages over clusters of a given size n with n. We investigate these scaling relations numerically and conclude that the scaling exponents are independent of the hydrodynamic interaction strength. The numerically determined exponents agree well with experimental data for branched polymers. However, we show that this traditional model of polymer physics is not able to yield a critical divergence at the gel point of the viscosity for a polydisperse dilute solution of gelation clusters. A generally accepted scaling relation for the Zimm exponent of the viscosity is thereby disproved.  相似文献   

13.
14.
The effect of matrix structure on the transport properties of adsorbed fluids is studied using computer simulations and percolation theory. The model system consists of a fluid of hard spheres diffusing in a matrix of hard spheres fixed in space. Three different arrangements of the fixed spheres, random, templated, and polymeric, are investigated. For a given matrix volume fraction the diffusion coefficient of the fluid, D, is sensitive to the manner in which the matrix is constructed, with large differences between the three types of matrices. The matrix is mapped onto an effective lattice composed of vertices and bonds using a Voronoi tessellation method where the connectivity of bonds is determined using a geometric criterion, i.e., a bond is connected if a fluid particle can pass directly between the two pores the bond connects, and disconnected otherwise. The percolation threshold is then determined from the connectivity of the bonds. D displays universal scaling behavior in the reduced volume fraction, i.e., D approximately (1-phi(m)phi(c))(gamma), where phi(m) is the matrix volume fraction and phi(c) is the matrix volume fraction at the percolation threshold. We find that gamma approximately 2.2, independent of matrix type, which is different from the result gamma approximately 1.53 for diffusion in lattice models, but similar to that for conduction in Swiss cheese models. Lattice simulations with biased hopping probabilities are consistent with the continuous-space simulations, and this shows that the universal behavior of diffusion is sensitive to details of local dynamics.  相似文献   

15.
Reversible aggregation of spheres is simulated using a novel method in which clusters of bound spheres diffuse collectively with a diffusion coefficient proportional to their radius. It is shown that the equilibrium state is the same as with other simulation techniques, but with the present method more realistic kinetics are obtained. The behavior as a function of volume fraction and interaction strength was tested for two different attraction ranges. The binodal and the percolation threshold were determined. The cluster structure and size distribution close to the percolation threshold were found to be consistent with the percolation model. Close to the binodal phase separation occurred through the growth of spherical dense domains, while for deep quenches a system spanning network is formed that coarsens with a rate that decreases with increasing attraction. We found no indication for arrest of the coarsening.  相似文献   

16.
采用动力学标度方法研究了磁控溅射沉积的非晶氮化铁薄膜的动力学生长机制, 结果表明, 具有连续类柱状岛形貌的非晶氮化铁薄膜具有标度不变的自仿射分形特点, 其粗糙度指数α=0.82±0.21, 生长指数β=0.44±0.07, 动力学标度指数1/z=0.54±0.07. 薄膜生长符合提出的热重新发射生长模型.  相似文献   

17.
研究了炭黑(CB)填充聚苯乙烯(PS)熔体的稳态和动态流变行为. CB/PS复合体系在CB体积分数φ=0.06时发生逾渗转变. 结果表明, 低应变区熔体模量降低主要归因于粒子-粒子及粒子-高分子间作用力的破坏, 高应变下模量的急剧下降则主要与高分子链间解缠结有关. 采用“两相”模型拟合线性动态流变行为, 发现应变放大因子Af(φ)、填充相模量及松弛指数与温度有关. Af(φ)~φ关系符合Guth方程和扩散控制的粒子簇聚集模型. “粒子相”形状参数与聚集体分维度均随温度升高而有所降低, 说明CB粒子聚集体因团聚而趋于各向同性, 应变放大效应减弱. “粒子相”特征模量G'f1(φ)和G"f0(φ)与φ关系满足标度律. 当φ > 0.06时, G'f1(φ)和G"f0(φ)及其标度指数均随温度升高而明显降低, 其G'f1(φ)变化幅度略大于G"f0(φ), 说明“粒子相”弹性与黏性组分具有不同的温度依赖性. 随着温度升高, 扩散控制的CB粒子团聚过程加快, 应变放大效应减弱.  相似文献   

18.
In this paper we investigate the phase behavior of a "simple" fluid confined to a chemically heterogeneous slit pore of nanoscopic width s(z) by means of Monte Carlo simulations in the grand canonical ensemble. The fluid-substrate interaction is purely repulsive except for elliptic regions of semiaxes A and B attracting fluid molecules. On account of the interplay between confinement (i.e., s(z)) and chemical decoration, three fluid phases are thermodynamically permissible, namely, gaslike and liquidlike phases and a "bridge phase" where the molecules are preferentially adsorbed by the attractive elliptic patterns and span the gap between the opposite substrate surfaces. Because of their lack of cylindrical symmetry, bridge phases can be exposed to a torsional strain 0相似文献   

19.
不同分子量可德胶水悬浮液的粘弹性研究   总被引:2,自引:0,他引:2  
采用动态粘弹性测量研究了不同分子量的生物大分子可德胶 (Curdlan)水悬浮液 (ASC)的流变学特性 .室温下观察到ASC具有弹性 (Solid like)行为 ,储能模量G′在测量范围内轻微依赖频率 ,而损耗模量G″和损耗角正切tanδ存在最小值 .ASC粘弹性随可德胶分子量和浓度的增加而增强 .ASC的流动特性符合Herschel Bulkley模型 ;其弹性行为可以通过渗流理论的标度弹性模型来描述 .网络结构是由于可德胶颗粒聚集或絮凝而形成的 ,当可德胶含量超过临界浓度cs=0 3 %时 ,弹性模量G′与可德胶浓度存在标度关系G′=Goεt,其中标度指数t=2 5 4.  相似文献   

20.
The interplay between chain conformations and phase separation in binary symmetric polymer mixtures confined into thin films by "neutral" hard walls (i.e., walls that do not preferentially attract or repel one of the two components of the mixture) is studied by Monte Carlo simulations. Using the bond fluctuation model on a simple cubic lattice in the semi grand canonical ensemble, we locate the critical temperature of demixing via finite size scaling methods for a wide range of chain lengths (16 infinity, and hence T(c) proportional, variant N. However, strong deviations from the Flory-Huggins theory occur as long as the unperturbed chain dimension exceeds D, and the critical behavior falls in the universality class of the two-dimensional Ising model for any finite value of D.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号