首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents an analytical method to investigate the nonlinear vibration characteristics of bi-graphene sheets/piezoelectric (BGP) laminated films subjected to electric loading based on a nonlocal continuum model, in which the two adjacent layers are coupled by van der Walls force. Utilizing von Kármán nonlinear geometric relation and nonlocal physical relation, the nonlinear dynamic equation of BGP laminated films under electric loading exerted on the piezoelectric layer is found, then the relation between the nonlinear resonant frequency and the nonlinear vibration amplitude for each layer of the BGP laminated films is obtained by using Galerkin method and harmonic-balance method. Results show that the nonlinear vibration amplitude for each layer of laminated films can be controlled by adjusting the electric potential exerted on piezoelectric layer, and the coupled effect of van der Walls force between graphene sheet and piezoelectric layer on the vibration amplitude of each layer depends on the order number of nonlinear resonant frequency and the mode shape.  相似文献   

2.
This paper presents the free vibration analysis of piezoelectric coupled annular plates with variable thickness on the basis of the Mindlin plate theory. No work has yet been done on piezoelectric laminated plates while the thickness is variable. Two piezoelectric layers are embedded on the upper and lower surfaces of the host plate. The host plate thickness is linearly increased in the radial direction while the piezoelectric layers thicknesses remain constant along the radial direction. Different combinations of three types of boundary conditions i.e. clamped, simply supported, and free end conditions are considered at the inner and outer edges of plate. The Maxwell static electricity equation in piezoelectric layers is satisfied using a quadratic distribution of electric potential along the thickness. The natural frequencies are obtained utilizing a Rayleigh–Ritz energy approach and are validated by comparing with those obtained by finite element analysis. A good compliance is observed between numerical solution and finite element analysis. Convergence study is performed in order to verify the numerical stability of the present method. The effects of different geometrical parameters such as the thickness of piezoelectric layers and the angle of host plate on the natural frequencies of the assembly are investigated.  相似文献   

3.
Polarization switching inside grains is time dependent. When external applied loading is not quasi-static, macroscopic properties of piezoelectric materials changes with the rate of loading. In this paper, a 2-D micromechanical model is proposed in order to simulate the rate dependent properties of certain perovskite type tetragonal piezoelectric materials based on linear constitutive, nonlinear domain switching, intergranular effects and kinetics models. The material is electrically loaded with an alternating voltage of various frequencies. For the onset of domain switching, energy equation is implemented. Propagation of the domain wall during domain switching in grains is modeled by means of exponential kinetics relation after domain nucleation. Mechanical strain butterfly loops under different frequencies (0.01Hz–1Hz) are simulated. The model gives important insights into the rate dependency of the piezoelectric materials that have been observed in some experiments reported in the literature. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
本文建立了用有限元法分析球壳的动力学方程.计算分析了不同边界条件下壳体的振动频率.  相似文献   

5.
This paper addresses the free vibration problem of multilayered shells with embedded piezoelectric layers. Based on the three-dimensional theory of elasticity, an approach combining the state space method and the differential quadrature method (DQM) is used. The shell has arbitrary end boundary conditions. For the simply supported boundary conditions closed-form solution is given by making the use of Fourier series expansion. Applying the differential quadrature method to the state space formulations along the axial direction, new state equations about state variables at discrete points are obtained for the other cases such as clamped or free end conditions. Natural frequencies of the hybrid laminated shell are presented by solving the eigenfrequency equation which can be obtained by using edges boundary condition in this state equation. Accuracy and convergence of the present approach is verified by comparing the natural frequencies with the results obtained in the literatures. Finally, the effect of edges conditions, mid-radius to thickness ratio, length to mid-radius ratio and the piezoelectric thickness on vibration behaviour of shell are investigated.  相似文献   

6.
Extensive continuum analyses are carried out to estimate the influence of matrix stiffness, a small length scale, and intertubular radial displacements on free vibrations of an individual double-walled carbon nanotybe. The analyses are based on both local and classical Euler–Bernoulli and Timoshenko elasticity theories with concentricity and nonconcentricity assumptions. The effect of a small length scale is incorporated in the formulations. New intertubular resonant frequencies are calculated based on these theories. Detailed results are demonstrated for the resonant frequencies as functions of matrix stiffness and the small length scale. The results indicate that the internal radial displacement and the stiffness of the surrounding matrix can greatly affect the resonant frequencies, especially at higher frequencies, and thus the latter does not keep the otherwise concentric structure at ultrahigh frequencies. More over, at high frequencies and small aspect ratios, the effect of the small length scale be comes more significant.  相似文献   

7.
In this paper a new approach for designing mechatronic vibrating branched structures has been presented. Mechatronic structures have been built from mechanical discrete systems connected to piezoelectric actuator and externalLxRxCx network, with different configurations. Modeling simplification has been performed by use of non dimensional transformations and retransformations. In each case reverse task has been solved by distribution into partial fraction method in respect to required dynamic properties in form of frequency spectrum: resonant and anti resonant frequencies. Furthermore, different configurations of final LxRxCx network have been presented. These considerations have been supported by calculation examples, and all results have been presented in the graphical form. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
主被动阻尼层合板结构的自由振动和阻尼特性分析   总被引:3,自引:0,他引:3  
给出了含主被动阻尼非对称复合材料层合板结构的振动微分方程;得到了在压电材料和高粘弹材料作主被动阻尼层情况下,简支层合板结构自由振动的自然频率和损失因子的解析解;分析了正逆向压电效应对自然频率和损失因子的影响  相似文献   

9.
In this paper, Mathieu equation is applied to analyze the dynamic characteristics of resonant inertial sensors. Unlike previous work, Mathieu equation is not just a differential equation and analyzes the stability of the transition curves, but become an important method in analyzing parametric resonant characteristics and approximate output of resonant inertial sensors. It is demonstrated that the mathematical model of resonant inertial sensors is described by Mathieu equation. The relevant Mathieu equation theory and dynamic characteristics analysis methods were proposed, which include both stability and dynamic linear output. Finally, theoretical and experimental analysis show that the correlation of the theoretical curve and the experimental result coincide so perfectly, which means proposed analysis methods for Mathieu equation could be used to analyze the dynamic output characteristic of resonant inertial sensors. The theoretical analyzing approach of Mathieu equation and experimental results of resonant inertial sensors are obtained, which provide an application area for Mathieu equation and a reference for the robust design for resonant inertial sensors.  相似文献   

10.
This paper aims at understanding the nature of the subwavelength resonant frequencies of dielectric particles with high refractive indices. It is proved that for an arbitrary shaped particle, these subwavelength resonant frequencies can be expressed in terms of the eigenvalues of the Newtonian potential associated with its shape. The enhancement of the scattered field at the resonant frequencies is shown. The hybridization of the subwavelength resonant frequencies of a dimer consisting of high refractive index dielectric nanoparticles is also characterized.  相似文献   

11.
This work investigates the active vibration control and vibration characteristics of a sandwich thin cylindrical shell whose intermediate layer is made of the graphene reinforced composite that is bonded with integrated piezoelectric actuator and sensor layers at its outer and inner surfaces. The volume fraction of graphene platelets in the intermediate layer varies continuously in the shell's thickness direction, which generates position-dependent effective material properties. The constitutive relations of the graphene reinforced composite and piezoelectric materials are given by taking one-dimensional steady thermal field into account. Considering Donnell's shell theory, a final equation of motion in terms of the generalized radial displacement is derived by using Hamilton's principle and Galerkin method. Shell's natural frequencies are derived considering influences of the thermo-electro-elastic field. Introducing a constant velocity feedback control algorithm, active vibration control of the sandwich cylindrical shell is presented by employing the Runge-Kutta method. The feedback control gain has a pronounced effect on the damping, as well as the inertia of the system. Comparisons between the present results and those in other papers are done to validate the present solutions. Influences of weight fractions, distribution patterns and geometrical sizes of graphene platelets, temperature variations, thicknesses of layers and the feedback control gain on the vibration characteristics and active vibration control behaviors of the novel sandwich cylindrical shell are discussed.  相似文献   

12.
We prove existence of small amplitude periodic solutions of completely resonant wave equations with frequencies in a Cantor set of asymptotically full measure, via a variational principle. A Lyapunov-Schmidt decomposition reduces the problem to a finite dimensional bifurcation equation—variational in nature—defined on a Cantor set of non-resonant parameters. The Cantor gaps are due to “small divisors” phenomena. To solve the bifurcation equation we develop a suitable variational method. In particular, we do not require the typical “Arnold non-degeneracy condition” of the known theory on the nonlinear terms. As a consequence our existence results hold for new generic sets of nonlinearities.  相似文献   

13.
The problem of forced monoharmonic, axisymmetric, bending vibrations and dissipative heating of circular viscoelastic plates with piezoelectric sensors and actuators is considered. We describe the viscoelastic behavior of a passive (without the piezoeffect) and a piezoactive material according to the concept of complex modules depending on temperature. The nonlinear coupled problem of electrothermoviscoelasticity is solved by numerical methods. The influence of boundary conditions and temperature of dissipative heating on the active damping of forced resonant vibrations of circular viscoelastic plates using piezoelectric sensors and actuators is investigated.  相似文献   

14.
In this paper, nonlinear dynamics, vibration and stability analysis of piezo-visco medium nanoshell resonator (PVM-NSR) based on functionally graded (FG) cylindrical nanoshell integrated with two piezoelectric layers subjected to visco-pasternak medium, electrostatic and harmonic excitations is investigated. Nonclassical method of the electro-elastic Gurtin–Murdoch surface/interface theory with von-Karman–Donnell's shell model as well as Hamilton's principle, the assumed mode method combined with Lagrange–Euler's are considered. Complex averaging method combined with arc-length continuation is used to achieve a numerical solution for the steady state vibrations of the system. The stability analysis of the steady state response is performed. The parametric studies such as the effects of different boundary conditions, different geometric ratios, structural parameters, electrostatic and harmonic excitation on the nonlinear frequency response and stability analysis are studied. The results indicate that near the natural frequency of the nanoshell, it will lead to resonance and will have large motion amplitude and near the resonant frequency, the nanoshell shows a softening type of nonlinear behavior, and the nanoshell bandwidth increases due to nonlinear factors. In this range, nanoshell has three different ranges of motion, of which two are stable and the other unstable, and so the jump phenomenon and saddle-node bifurcation are visible in the behavior of the system. Also piezoelectric voltage influences on static deformation and resonant frequency but has no significant effect on nonlinear behavior and bandwidth and also system very sensitive to the damping coefficient and due to decrease of nano shell stiffness, natural frequency decreases. And also, increasing or decreasing of some parameters lead to increasing or decreasing the resonance amplitude, resonant frequency, the system's instability, nonlinear behavior and bandwidth.  相似文献   

15.
The main objective of this paper is understanding the propagation laws obeyed by high-frequency limits of Wigner distributions associated to solutions to the Schrödinger equation on the standard d-dimensional torus Td. From the point of view of semiclassical analysis, our setting corresponds to performing the semiclassical limit at times of order 1/h, as the characteristic wave-length h of the initial data tends to zero. It turns out that, in spite that for fixed h every Wigner distribution satisfies a Liouville equation, their limits are no longer uniquely determined by those of the Wigner distributions of the initial data. We characterize them in terms of a new object, the resonant Wigner distribution, which describes high-frequency effects associated to the fraction of the energy of the sequence of initial data that concentrates around the set of resonant frequencies in phase-space T*Td. This construction is related to that of the so-called two-microlocal semiclassical measures. We prove that any limit μ of the Wigner distributions corresponding to solutions to the Schrödinger equation on the torus is completely determined by the limits of both the Wigner distribution and the resonant Wigner distribution of the initial data; moreover, μ follows a propagation law described by a family of density-matrix Schrödinger equations on the periodic geodesics of Td. Finally, we present some connections with the study of the dispersive behavior of the Schrödinger flow (in particular, with Strichartz estimates). Among these, we show that the limits of sequences of position densities of solutions to the Schrödinger equation on T2 are absolutely continuous with respect to the Lebesgue measure.  相似文献   

16.
The paper is concerned with the eigenvalue problems for piezoelectric bodies with voids in contact with massive rigid plane punches and coved by the system of open-circuited and short-circuited electrodes. The linear theory of piezoelectric materials with voids for porosity change properties according to Cowin–Nunziato model is used. The generalized statements for eigenvalue problem are obtained in the extended and reduced forms. A variational principle is constructed which has the properties of minimality, similar to the well-known variational principle for problems with pure elastic media. The discreteness of the spectrum and completeness of the eigenfunctions are proved. The orthogonality relations for eigenvectors are obtained in different forms. As a consequence of variational principles, the properties of an increase or a decrease in the natural frequencies, when the mechanical, electric and “porous” boundary conditions and the moduli of piezoelectric solid with voids change, are established.  相似文献   

17.
The effect of evanescent modes on the scattering and near-trappingof small-amplitude waves over axisymmetric topography is investigated.A two-stage numerical implementation, which facilitates an examinationof the resonant frequencies associated with near-trapping, isdeveloped. This is achieved in the latter stage of the procedureby dealing with the progressing and decaying waves separately. Numerical results are given for a selection of bed shapes, andit is found that the evanescent waves can have a significanteffect on scattering. Numerical evidence is found that, forthe selection of bed profiles considered, no new resonant frequenciesare introduced by the inclusion of the decaying wave components,but that the inclusion of these decaying waves does improveprevious approximations to resonant frequencies.  相似文献   

18.
The paper is concerned with the eigenvalue problems for piezoelectric bodies with voids in contact with massive rigid plane punches and coved by the system of open-circuited and short-circuited electrodes. The linear theory of piezoelectric materials with voids for porosity change properties according to Cowin–Nunziato model is used. The generalized statements for eigenvalue problem are obtained in the extended and reduced forms. A variational principle is constructed which has the properties of minimality, similar to the well-known variational principle for problems with pure elastic media. The discreteness of the spectrum and completeness of the eigenfunctions are proved. The orthogonality relations for eigenvectors are obtained in different forms. As a consequence of variational principles, the properties of an increase or a decrease in the natural frequencies, when the mechanical, electric and “porous” boundary conditions and the moduli of piezoelectric solid with voids change, are established.  相似文献   

19.
This paper is concerned with the free vibration of the fluid-filled multi-walled carbon nanotubes (MWCNTs) with simply supported ends. Based on simplified Donnell’s cylindrical shell model and potential flow theory, the effect of internal fluid on the coupling vibration of the MWCNTs-fluid system is discussed in detail. The results show that the resonant frequencies are decreased due to the effect of the fluid, and the fluid has only a little influence on the associated amplitude ratio in MWCNTs corresponding to the natural resonant frequency (frequency of the innermost tube), while plays a significant role in the associated amplitude ratios corresponding to the intertube resonant frequency. For the natural resonant frequency, the vibration mode is coaxial. However, for the intertube resonant frequency, the system shows complex noncoaxial vibration, which plays a critical role in electronic and transport properties of carbon nanotubes (CNTs).  相似文献   

20.
Internal waves are generally accepted to be responsible for a large fraction of mixing in the deep ocean. Internal waves interact nonlinearly with one another, exchanging energy among themselves to create the background internal wave spectrum. The most important mechanism resulting in the transfer of energy from one wave to another is believed to be resonant triad interactions. In this paper we consider a large number of resonantly interacting triads in order to investigate the evolution of the energy spectrum due to solely resonant triad interactions. To this end we solve the evolution equations for a large number of resonant triads to determine the temporal evolution of the energy distribution among the various possible wave numbers and frequencies. Our model involves internal waves with frequencies spanning the range of possible frequencies, i.e., between a maximum of the buoyancy frequency N for horizontal wave vectors (vertical motion) to a minimum of the inertial frequency f for vertical wave vectors (horizontal motion) [two limiting cases]. Because of the inclusion of high-frequency waves we cannot make the hydrostatic approximation. We investigate the evolution of the wave’s amplitudes to predict the evolution of the internal wave energy spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号