首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
湍流大气中高斯谢尔光束的波前位错   总被引:12,自引:12,他引:0  
张逸新  陶纯堪 《光子学报》2005,34(12):1841-1844
在Rytov近似下,通过引入短期统计平均位错位置的概念,研究了高斯谢尔光束通过近地面弱湍流大气传播时,波前圆形位错形成和位错位置与湍流大气起伏强度和传播距离等参数间的关系.基于湍流大气中平行和交叉双光束的简化近似传输模型,研究了湍流大气中传播高斯谢尔光束波前位错位置与大气湍流强度、传输距离等参数间的相关机制.在远小于光波位相起伏周期的条件下,分别得出了束径不同同轴双光束和交叉双光束传播情况下波前圆位错位置的湍流系综统计平均理论关系.所得结果表明,同轴平行光束干涉和交叉光束干涉所产生的光束波前位错受大气湍流强度、传输距离等参数调制的规律是不同的.  相似文献   

2.
Based on the extended Huygens–Fresnel integral, analytical formulas for the cross-spectral density, mean-squared beam width and angular spread of a partially coherent elegant Hermite–Gaussian (HG) beam in turbulent atmosphere are derived. The evolution properties of the average intensity, spreading and directionality of a partially coherent elegant HG beam in turbulent atmosphere are studied numerically. It is found that the partially coherent elegant HG beam with smaller initial coherence width, larger beam order and longer wavelength is less affected by the atmospheric turbulence. Compared to the partially coherent standard HG beam, the partially coherent elegant HG beam is less affected by turbulence under the same condition. Furthermore, it is found that there exist equivalent partially coherent standard and elegant HG beams, equivalent fully coherent standard and elegant HG beams, and an equivalent Gaussian–Schell-model beam may have the same directionality as a fully coherent Gaussian beam whether in free space or in turbulent atmosphere. Our results can be utilized in short and long atmospheric optical communication systems.  相似文献   

3.
王涛  蒲继雄  陈子阳 《光学学报》2008,28(s2):82-86
根据广义的惠更斯-菲涅耳原理, 研究了涡旋光束在湍流大气中的传输特性。研究结果表明, 涡旋光束在湍流大气中传输时, 截面光强会从空心分布转化为高斯分布。光束所带的拓扑电荷数以及大气湍流均会影响光强分布的变化。研究结果还表明, 涡旋光束能够抑制大气湍流对光束扩展的影响, 这一现象得到了实验上的证实。通过杨氏双缝干涉的方法, 还研究了涡旋光束经过湍流大气传输后的拓扑电荷数。研究发现, 涡旋光束经过湍流大气后, 拓扑电荷数将发生波动。  相似文献   

4.
Propagation of coherent combined laser beams in turbulent atmosphere is numerically studied based on the extended Huygens-Fresnel principle. By choosing beam propagation factor (BPF) and beam quality factor (BQ) to characterize the far-field irradiance distribution properties, the influence of turbulence on far-field coherent combined beam quality is studied in detail. The investigation reveals that with the coherence length decreasing, the irradiance distribution pattern evolves from typical non-Gaussian shape with multiple side-lobes into Gaussian shape which is seen in the incoherent combining case. In weak turbulent atmosphere, the far-field beam quality suffers less when the 1aser array gets more compact and operates at a longer wavelength. In strong turbulent atmosphere, the far-field beam quality degrades into the incoherent combining case without any relationship with the fill factor and laser wavelength.  相似文献   

5.
蒲继雄  王涛  林惠川  李成良 《中国物理 B》2010,19(8):89201-089201
<正>Based on the extended Huygens-Presnel principle,the propagation of cylindrical vector beams in a turbulent atmosphere is investigated.The intensity distribution and the polarization degree of beams on propagation are studied. It is found that the beam profile has a Gaussian shape under the influence of the atmospheric turbulence,and the polarization distribution shows a dip in the cross section as the beam propagates in the turbulent atmosphere.It is also found that the beam profile and the polarization distribution are closely related to beam parameter and atmospheric turbulence.  相似文献   

6.
Normalized intensity distribution, the complex degree of coherence and power in the bucket for partially coherent controllable dark hollow beams (DHBs) with various symmetries propagating in atmospheric turbulence are derived using tensor method and investigated in detail. Analytical results show that, after sufficient propagation distance, partially coherent DHBs with various symmetries eventually become circular Gaussian beam (without dark hollow) in turbulent atmosphere, which is different from its propagation properties in free space. The partially coherent DHBs return to a circular Gaussian beam rapidly for stronger turbulence, higher coherence, lower beam order, smaller p or smaller beam waist width. Another interesting observation is that the profile of the complex degree of coherence attains a similar profile to that of the average intensity of the related beam propagating in a turbulent atmosphere. Besides the laser power focusablity of DHBs are better than that of Gaussian beam propagating in turbulent atmosphere.  相似文献   

7.
A phase singularity of the light field created by interference of two Gaussian singular beams which propagate in a weak and near ground turbulent atmosphere is analyzed by the Rytov approximation and the short-term averaging method of the dislocation-position. We demonstrate that an edge or circular dislocation may be formed by both parallel and coaxial or noncoaxial collimated beams with different or equal beam-width interfere. The edge or circular short-term wavefront dislocations of super position field depend on the atmospheric turbulence strength, beam propagation distance, amplitude ratio, dislocation of nesting vortices, and beam-width or beam-width ratio of the individual beams.  相似文献   

8.
部分相干光束经过湍流大气传输研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
王飞  余佳益  刘显龙  蔡阳健 《物理学报》2018,67(18):184203-184203
相较于相干光束,部分相干光束经过湍流大气传输能够有效地抑制湍流引起的光束展宽、光斑漂移及光强闪烁等扰动效应,在自由空间光通信、激光雷达和激光遥感等方面有重要的应用前景.近年来,部分相干光束湍流大气传输研究受到越来越多学者的关注.本文回顾了部分相干光束在湍流大气中传输特性研究的发展历程、理论基础及常用的理论方法,介绍了处理光束经过湍流大气传输的相位屏数值模拟方法,以及如何把该方法运用到处理部分相干光束传输.  相似文献   

9.
Propagation properties of anomalous hollow beams in a turbulent atmosphere   总被引:1,自引:0,他引:1  
Propagation of circular and elliptical anomalous hollow beams in a turbulent atmosphere is investigated in detail. Based on the extended Huygens–Fresnel integral, analytical formulae for the average irradiance of circular and elliptical anomalous hollow beams propagating in a turbulent atmosphere are derived. The irradiance and spreading properties of circular and elliptical anomalous hollow beams in a turbulent atmosphere and in free space are studied numerically. It is found that circular and elliptical anomalous hollow beams at short propagation distance in turbulent atmosphere have similar propagation properties to those of free space, while at long propagation distance, circular and elliptical anomalous hollow beams eventually become circular Gaussian beams in a turbulent atmosphere, which is much different from their propagation properties in free space. The conversion from an anomalous hollow beam to a circular Gaussian beam becomes quicker and the beam spot spreads more rapidly for a larger structure constant, a shorter wavelength and a smaller waist size of the initial beam.  相似文献   

10.
In this paper, taking the electromagnetic partially coherent flat-topped (PCFT) beam as an example, we investigate the spectral changes of stochastic electromagnetic beams with astigmatic aberration propagating through a turbulent atmosphere. The analytic expressions for the spectrum of the beams propagating through the turbulent atmosphere are derived. It is shown that the spectral changes of the electromagnetic PCFT beams in the turbulent atmosphere are closely related with the astigmatism aberration, the strength of atmospheric turbulence, the inner scale of turbulence, the correlation of source and the order of flatness of electromagnetic PCFT beams. It is important to note that the spectral changes of the aberrant electromagnetic PCFT beams are insensitive to the atmospheric turbulence. Some possible explanations have also been given for the interesting physical phenomena.  相似文献   

11.
With the help of the tensor method, the analytical expression for the cross-spectral density of the radial partially coherent flat-topped array (RPCFTA) beams propagating in a turbulent atmosphere is derived, where the correlated superposition and uncorrelated superposition are considered. The average intensity, the spatial coherence properties and power in bucket (PIB) of these kinds of beams are investigated in detail. It is shown by numerical results and analysis that the average intensity and the spatial coherence of the correlated or uncorrelated RPCFTA beams will change on propagation and this change is dependent upon the correlation of the source's beamlets and atmospheric turbulence. In addition, the comparisons of the average intensity and the spatial coherence between the correlated and the uncorrelated RPCFTA beams propagating both in turbulent atmosphere and in free space are also given, and some interesting results are obtained. The laser power of focus ability of the single PCFT beam is worse than that of the correlated RPCFTA beam and but better than that of the uncorrelated RPCFTA beam when propagation distance in turbulent atmosphere is far-field plane.  相似文献   

12.
王华  王向朝  曾爱军  杨坤 《物理学报》2008,57(1):634-638
由湍流大气中斜程传输时准单色高斯-谢尔(GSM)光束互相干函数的解析式导出了该光束的复相干度.然后,利用表征光束空间相干性的横向相干长度,研究了斜程传输时大气湍流对准单色GSM光束空间相干性的影响.研究结果表明:1)当传输路径偏离水平方向较大(即θ≤88°)时,准单色GSM光束横向相干长度随传输距离均为先迅速增加,后缓慢增加,最后基本保持不变.2)当传输路径接近水平方向(即θ≥89°)时,准单色GSM光束横向相干长度随传输距离均为先增大,达到一个最大值后开始下降并持续减小.3) 关键词: 大气光学 空间相干性 高斯-谢尔光束 斜程传输  相似文献   

13.
The propagation of an elliptical Gaussian beam (EGB) through an astigmatic ABCD optical system in a turbulent atmosphere is investigated. An analytical formula for the average intensity of an EGB and a generalized tensor ABCD law for the generalized complex curvature tensor are derived. As an application example, we derived an analytical formula for the average intensity of an elliptical flat-topped beam propagating through an astigmatic ABCD optical system in a turbulent atmosphere. As a numerical example, the focusing properties of an EGB focused by a thin lens in a turbulent atmosphere are studied. It is found that the focused beam at the focal plane becomes a circular Gaussian beam when the atmospheric turbulence is strong enough, and the beam width of the circular Gaussian beam is determined by atmospheric turbulence strength, focal length of the thin lens, and wavelength of the initial beam but is independent of the initial beam widths (i.e., initial intensity distribution).  相似文献   

14.
The characteristics of partially coherent Bessel-Gaussian beams propagating in turbulent atmosphere are investigated. Based on the extended Huygens–Fresnel principle, the influence of topological charges and coherence of the source on the intensity and the degree of coherence in the received plane are considered. The influence of atmospheric turbulence on beam profile and coherence in the received plane is also analyzed. It is found that a Bessel-Gaussian shaped intensity distribution will eventually transform into a Gaussian distribution after propagating in turbulent atmosphere. Meanwhile, topological charges, coherence of the source and atmospheric turbulence will also influence the propagation characterizations of the beams.  相似文献   

15.
With the help of the tensor method, the cross-spectral density matrix for the stochastic electromagnetic twist anisotropic Gaussian-Schell model (ETAGSM) beam truncated by a slit aperture propagating in turbulent atmosphere are derived. The spectral properties of this kind of beam are investigated in detail. It is shown by numerical results and analysis that the affection of the slit aperture on the spectral properties of the stochastic ETAGSM beam is obvious in the near field; while in the far field, the atmospheric turbulence plays an important role; the source beam's coherence can weaken the affection of the slit aperture and the atmospheric turbulence on the spectral properties of the stochastic ETAGSM beam truncated by a slit aperture propagating in turbulent atmosphere, while the twist properties of the source beam can strong the affection of the slit aperture on the spectral properties in the near field. Also, the spectral degree of polarization and normalized spectral density distributions and corresponding contour graphs of the stochastic ETAGSM beam truncated by a slit aperture propagating in turbulent atmosphere and free space at different propagation distances are investigated in detail.  相似文献   

16.
相干合成光束在湍流大气中的传输   总被引:4,自引:0,他引:4  
周朴  许晓军  刘泽金  储修祥 《光学学报》2008,28(11):2051-2056
分析了湍流大气对相干合成光束传输的影响,根据广义惠更斯-菲涅耳原理,对相干合成光束在不同强度湍流大气中传输进行计算,对接收平面处的光强分布的统计特性,如桶中功率(PIB)曲线、局部功率曲线进行比较.研究结果表明,较弱的湍流大气对相干合成光束的传输影响较小,接收平面的光强分布以及PIB曲线基本不变;随着湍流强度的增大,相干合成光束的光强分布和PIB曲线产生显著变化,光斑扩展和能量的弥散速度加快,光束的能量集中度显著降低.计算了湍流大气传输后光束的空间相干度,认为空间相干度下降是降低相干合成效果的原因,对如何降低湍流大气的影响进行讨论.  相似文献   

17.
季小玲  汤明玥 《物理学报》2006,55(9):4968-4973
研究了一维(1D)线阵离轴高斯光束通过湍流大气的传输特性,推导出了其光强传输方程. 研究表明,1D线阵离轴高斯光束通过湍流大气传输经历了三个阶段,即在近场其光强分布为类似于入射光的锯齿状分布,随着传输距离的增加逐渐变为平顶分布,最后在远场成为类高斯分布. 湍流的增强会使光束传输经历三阶段的进程加快. 并且,湍流使得不同子光束数的1D线阵离轴高斯光束的归一化光强分布相接近. 此外,子光束数越多的1D线阵离轴高斯光束受到湍流的影响越小;1D线阵离轴高斯光束较高斯光束受到湍流的影响要小. 关键词: 一维(1D)线阵离轴高斯光束 湍流大气 传输特性  相似文献   

18.
Paraxial propagation of an elegant Laguerre-Gaussian beam (ELGB) in a turbulent atmosphere is investigated in detail. Analytical formulae for the average intensity and effective beam size of an ELGB in a turbulent atmosphere are derived based on the extended Huygens-Fresnel integral. The average intensity and spreading properties of an ELGB in a turbulent atmosphere are studied numerically and compared with those of a standard Laguerre-Gaussian beam (SLGB). Our results indicate that the propagation properties of an ELGB in a turbulent atmosphere are much different from its properties in free space, and are closely related to its beam parameters and the structure constant of the atmospheric turbulence. The ELGB with higher mode orders is less affected by the turbulence. The SLGB spreads more rapidly than the ELGB in a turbulent atmosphere under the same conditions. Our results will be useful in long-distance free-space optical communications. ©2010 Elsevier Science B.V. All rights reserved.  相似文献   

19.
Based on the extended Huygens–Fresnel principle, we study the propagation properties of partially coherent double-vortex beams in turbulent atmosphere. The intensity distribution of the beams on propagation and the influence of the characteristic parameters are investigated in great detail. It is shown that when the beams propagate in turbulent atmosphere, the intensity distributions are of double-ring structure near the source plane, but they will experience change, which are determined by the topological charges, the spatial coherence, source beam width and atmospheric turbulence. These results may have applications in space optical communication.  相似文献   

20.
The propagation and spreading of a Hermite–Laguerre–Gaussian (HLG) beam in a turbulent atmosphere has been investigated. Based on the extended Huygens–Fresnel integral and some mathematical techniques, analytical expressions for the average intensity, the effective beam size, and the kurtosis parameter of an HLG beam in a turbulent atmosphere are derived, respectively. The average intensity distribution and the spreading properties of HLG beams in a turbulent atmosphere are numerically demonstrated. Upon propagation in a turbulent atmosphere, the central lobes in the beam spot of the HLG beam will evolve into the dominant lobes, and the peripheral lobes around the central lobes will evolve into the subdominant lobes. The influences of the additional angle parameter and the transversal mode numbers on the propagation of HLG beams in a turbulent atmosphere are also discussed. As the coherence length of the turbulence is determined by the propagation distance, the effect of the additional angle parameter on the effective beam size is related to the propagation distance. The kurtosis parameter generally increases with increasing the additional angle parameter. The influence of the transversal mode numbers on the kurtosis parameter is related to the additional angle parameter and the propagation distance. According to the practical need of free-space optical communications and remote sensing, the HLG beam in a turbulent atmosphere can be controlled by choice of the additional angle parameter and the transversal mode numbers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号