首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 104 毫秒
1.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

2.
Fluorescent chemosensor 3 can sense Cu2+ ions (1-8 μM) even in the presence of elevated levels of Ni2+, Cd2+, Zn2+, Hg2+, Ag+ and Pb2+ (5000 μM). 3 can also analyze for Ag+ ions (50-500 μM) in the presence of Ni2+, Cd2+, Zn2+, Hg2+ and Pb2+ (5000 μM) but Cu2+ strongly interferes.  相似文献   

3.
A new intramolecular charge transfer (ICT) probe 3 is found to display a highly selective photophysical response in the presence of Zn2+, among various biologically significant metal ions examined. The absorption band of 3 is red shifted by 84 nm and the fluorescence intensity increases 13-fold in the presence of Zn2+. The binding interaction follows the order Zn2+ > Cd2+ > Mg2+ > Ba2+ > Ca2+ > K+ ≅ Na+ ≅ Li+ and the stability constant for 3 + Zn2+ is over an order of magnitude higher compared to biologically competing Ca2+ and Mg2+.  相似文献   

4.
A new 1,8-naphthalimide derivative bearing an aza-15-crown-5 macrocycle (1) has been synthesized as a chemosensor for Hg2+ by a two-step reaction. The sensor shows selectivity to Hg2+ over 11 other metal cations in aqueous media. Upon addition of Hg2+, the fluorescence emission of the sensor at 537 nm is significantly quenched along with 22 nm blue-shift that makes this compound a useful sensor for Hg2+ measurement.  相似文献   

5.
6.
A novel fluorescent chemical sensor for the highly sensitive and selective determination of Fe3+ ions in aqueous solutions is prepared. The iron sensing system was prepared by incorporating 5-(8-hydroxy-2-quinolinylmethyl)-2,8-dithia-5-aza-2,6-pyridinophane (L) as a neutral Fe3+-selective fluoroionophore in the plasticized PVC membrane containing sodium tetraphenylborate as a liphophilic anionic additive. The response of the sensor is based on the strong fluorescence quenching of L by Fe3+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range from 6.0 × 10−4 to 1.0 × 10−7 M, with a relatively fast response time of less than 2 min. In addition to a high stability and reproducibility, the sensor shows a unique selectivity toward Fe3+ ion with respect to common coexisting cations. The proposed fluorescence optode was applied to the determination of iron(III) content of straw of rice, spinach and different water samples. The fluorescent sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

7.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

8.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

9.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

10.
Zhaochao Xu  Jingnan Cui  Rong Zhang 《Tetrahedron》2006,62(43):10117-10122
The design, synthesis, and photophysical evaluation of a new naphthalimide-based fluorescent chemosensor, N-butyl-4-[di-(2-picolyl)amino]-5-(2-picolyl)amino-1,8-naphthalimide (1), were described for the detection of Zn2+ in aqueous acetonitrile solution at pH 7.0. Probe 1 showed absorption at 451 nm and a strong fluorescence emission at 537 nm (ΦF=0.33). The capture of Zn2+ by the receptor resulted in the deprotonation of the secondary amine conjugated to 1,8-naphthalimide so that the electron-donating ability of the N atom would be greatly enhanced; thus probe 1 showed a 56 nm red-shift in absorption (507 nm) and fluorescence spectra (593 nm, ΦF=0.14), respectively, from which one could sense Zn2+ ratiometrically and colorimetrically. The deprotonated complex, [(1-H)/Zn]+, was calculated at m/z 619.1800 and measured at m/z 618.9890. In contrast to these results, the emission of 1 was thoroughly quenched by Cu2+, Co2+, and Ni2+. The addition of other metal ions such as Li+, Na+, K+, Mg2+, Ca2+, Fe3+, Mn2+, Al3+, Cd2+, Hg2+, Ag+, and Pb2+ produced a nominal change in the optical properties of 1 due to their low affinity to probe 1. This means that probe 1 has a very high fluorescent imaging selectivity to Zn2+ among metal ions.  相似文献   

11.
A rapid and reliable capillary zone electrophoresis method for the determination of inorganic cations was developed. The complete separation of K+, Ba2+, Ca2+, Na+, Mg2+, Mn2+, Ni2+, Cd2+, Li+ and Cu2+ can be achieved in 4 min with a simple electrolyte composed by 10 mM imidazole as the carrier buffer and background absorbance provider and acetic acid as the complexing agent (pH 3.60). Injection was performed hydrostatically by elevating the sample at 10 cm for 30 s. The running voltage was +25 kV at room temperature. Indirect UV-absorption detection was achieved at 185 nm. The detection limit was in the range between 0.06 mg/l (Mg2+) and 0.57 mg/l (K+) and the quantification limits ranged from 0.10 mg/l (Ni2+) to 0.80 mg/l (Cu2+). The calibration graphs were linear in the concentration range from the quantification limit till at least 1 g/l in K+, 10 mg/l in Ba2+, Ca2+, Mg2+, Mn2+, Ni2+ and Cd2+, 40 mg/l in Na+ and 12 mg/l in Li+ and Cu2+. The repeatability, intraday and interday analysis were ≤1.55% and ≤3.64% for migration time and ≤3.38% and ≤3.63% for peak area. The method developed has been applied to several beverage samples with only a simple dilution and filtration treatment of the sample. The proposed method is simple, fast, cheap and it is achieved with common products in either laboratory. For these reasons, it is a very useful method for routine analysis.  相似文献   

12.
A novel ‘three-level’ deepened cavitand featuring a significantly sizable portal has been synthesized and its interaction with some transition metal ions has been investigated in THF/H2O binary solvent using fluorescence quenching technique. The results suggest that among the used transition metal ions including Ag+, Cd2+, Cu2+, Fe3+, Cr3+, Hg2+, La3+, Mn2+, Ni2+, Zn2+ and Co2+, only Fe3+ and Cu2+ show good quenching ability. In order to interpret the quenching mechanism, the Stern–Volmer kinetics, and the presence of both the dynamic and static quenching have been discussed. It was found that the simultaneous presence of the sphere-of-action static quenching and dynamic quenching model agrees very well with the experimental results. The limits of detection for Fe3+ and Cu2+ were found to be 2.1 × 10−6 mol L−1 (3σ) and 3.6 × 10−6 mol L−1 (3σ), respectively. Cations with potential interference, such as K+, Na+, Mg2+, Ca2+, Co2+, La3+ and Mn2+ do not have significant effects on the determinations of Fe3+ and Cu2+. This cavitand can be potentially applied as optical sensor for the detection of Fe3+ and Cu2+.  相似文献   

13.
New photo-induced electron transfer (PET) probes OMOX and OBOX, carrying an additional binding site in the form of ‘oxadiazole nitrogen’ have been designed to evaluate binding interactions with biologically significant Li+, Na+, K+, Ca2+, Mg2+, and Zn2+ including environmentally toxic Ba2+ and Cd2+ using optical spectral techniques. While Li+, Na+, and K+ did not appreciably perturb either the absorption or emission spectra, Ba2+, Ca2+, Mg2+, Zn2+, and Cd2+ induced slight red shifts (2-8 nm) in the UV-visible spectra as well as pronounced chelation induced enhanced fluorescence (CHEF). Both OMOX and OBOX exhibited the highest CHEF in contact with the zinc ion, whereas Ba2+, Ca2+, Mg2+, and Cd2+ induced relatively less emission enhancements. OBOX, which is a poorer emitter (Φf=0.0062) than OMOX (Φf=0.015), showed highly promising 160-fold emission enhancement in the presence of Zn2+. Potential, therefore is available in OBOX to function as a selective luminescent ‘off-on’ sensor for Zn2+ in the presence of coordinatively competing Ba2+, Ca2+, Mg2+, and Cd2+ ions.  相似文献   

14.
Cu2+-mediated salbutamol-imprinted polymer nanoparticles, synthesized by precipitation polymerization, were mixed with graphite powder and n-eicosane in order to fabricate a modified carbon paste electrode. This electrode was then applied for indirect differential pulse voltammetry determination of salbutamol. In the presence of Cu2+ ions, the formed Cu2+–salbutamol complex was adsorbed in to the pre-designed cavities of the MIP particles, situated on the electrode surface. Since the electrochemical signal of salbutamol was intrinsically small, the oxidation peak of the participant Cu2+, after reduction step, was recorded and used as an indication of salbutamol amount, adsorbed in the electrode. Different variables influencing the sensor performance were studied and the best conditions were chosen for the determination purpose. Correlation between the sensor response to salbutamol and its concentration was linear in the range of 1.0 × 10−9–5.5 × 10−8 M. Detection limit was calculated equal to 6.0 × 10−10 M (S/N). Five replicated determination of salbutamol (1 × 10−8 M) resulted in standard error of 3.28%, meaning a satisfactory precision of the determination method. The prepared sensor was applied for real sample analysis. In order to minimize the interference effect, the synthesized polymer was successfully used as a solid phase sorbent for salbutamol extraction, before analysis of real samples by the developed sensor.  相似文献   

15.
A new molecularly imprinted electrochemiluminescence (ECL) sensor was proposed for highly sensitive and selective determination of ultratrace Be2+ determination. The complex of Be2+ with 4-(2-pyridylazo)-resorcinol (PAR) was chosen as the template molecule for the molecularly imprinted polymer (MIP). In this assay, the complex molecule could be eluted from the MIP, and the cavities formed could then selectively recognize the complex molecules. The cavities formed could also work as the tunnel for the transfer of probe molecules to produce sound responsive signal. The determination was based on the intensity of the signal, which was proportional to the concentrations of the complex molecule in the sample solution, and the Be2+ concentration could then be determined indirectly. The results showed that in the range of 7 × 10−11 mol L−1 to 8.0 × 10−9 mol L−1, the ECL intensity had a linear relationship with the Be2+ concentrations, with the limit of detection of 2.35 × 10−11 mol L−1. This method was successfully used to detect Be2+ in real water samples.  相似文献   

16.
Iridium oxide nanoparticles are grown on a glassy carbon electrode by electrodepositing method. The electrochemical behavior and electrocatalytic activity of modified electrode towards reduction of iodate and periodate are studied. The reductions of both ions occur at the unusual positive peak potential of 0.7 V vs. reference electrode. The modified electrode is employed successfully for iodate and periodates detection using cyclic voltammetry, hydrodynamic amperometry and flow injection analysis (FIA). In the performed experiments, flow injection amperometric determination of iodate and periodate yielded calibration curves with the following characteristics: linear dynamic range up to 100 and 80 μM, sensitivity of 140.9 and 150.6 nA μM−1 and detection limits of 5 and 36 nM, respectively. The repeatability of the modified electrode for 21 injections of 1.5 μM of iodate solution is 1.5%. The interference effects of NO2, NO3, ClO3, BrO3, ClO4, SO42−, Cu2+, Zn2+, Mn2+, Mg2+, Cd2+, Ca2+, Na+, K+, NH4+ and K+, CH3COO and glucose were negligible at the concentration ratio of more than 1000. The obtained attractive analytical performance together with high selectivity and simplicity of the proposed method provide an effective and e novel modified electrode to develop an iodate and periodate sensor. Sensitivity, selectivity, the liner concentration range and the detection limit of the developed sensor are all much better than all known similar sensors in the literature for iodate and periodate determination.  相似文献   

17.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

18.
A novel fluorescence chemical sensor for the highly sensitive and selective determination of Pb2+ ions in aqueous solutions is described. The preliminary potentiometric and spectrofluorimetric complexation studies in solution revealed that the lipophilic ligand 5,8-bis((5′-chloro-8′-hydroxy-7′-quinolinyl)methyl)-2,11-dithia-5,8-diaza-2,6-pyridinophane (L2) forms a highly stable and selective [PbL2]2+ and [Pb(L2)2]2+ complexes which results in a strong fluorescence quenching of the ligand. Thus, a novel fluorescence Pb2+ sensing system was prepared by incorporating L2 as a neutral lead-selective fluoroionophore in the plasticized PVC membrane containing tetrakis(p-chlorophenyl) borate as a liphophilic anionic additive. The response of the sensor is based on the strong selective fluorescence quenching of L2 by Pb2+ ions. At pH 5.5, the proposed sensor displays a calibration curve over a wide concentration range of 3.0 × 10−7 to 2.5 × 10−2 M with a relatively fast response time of less than 5 min. In addition to high stability, reversibility and reproducibility, the sensor shows a unique selectivity towards Pb2+ ion with respect to common coexisting cations. The proposed fluorescence optode was successfully applied to the determination of lead in plastic toys and tap water samples.  相似文献   

19.
Nanostructured polypyrrole (PPy) film doped with Tiron was electrodeposited from aqueous solution on the surface of transparent electrode and used for sensitive, selective and rapid electrically controlled fluorescence detection of Fe3+ in aqueous media. The fluorescence intensity of PPy-Tiron film decreases linearly in the presence of Fe3+ by applying negative potential over a concentration range from 5.0 × 10−8 to 1.0 × 10−6 mol L−1, with a relatively fast response time of less than 30 s at pH 7.4. The detection is not affected by the coexistence of other competitive metal ions such as Al3+, Ce3+, Tl3+, La3+, Bi3+, Cr2+, Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+, Hg2+, Pb2+, Na+, K+, Mg2+, Ca2+, Sr2+ and Ba2+. The proposed electro-fluorescence sensor has a potential application to the determination of Fe3+ in environmental and biological systems. The fluorescent thin film sensor was also used as a novel probe for Fe3+/Fe2+ speciation in aqueous solution.  相似文献   

20.
A series of crown ethers carrying an anthracene group with nitrogen–sulfur donor atom, which differ in having three, four and five sulfur atoms in the macrocycle was designed and synthesized by the reaction of the corresponding macrocyclic compound and 9-chloromethyl-anthracene. The influence of metal cations such as Al3+, Zn2+, Fe2+, Fe3+, Co2+, Ni2+, Mn2+, Cu2+, Cd2+, Hg2+ and Pb2+ on the spectroscopic properties of the ligands was investigated in acetonitrile–dichloromethane (1:1) by means of absorption and emission spectrometry. Absorption spectra show isosbestic points in the spectrophotometric titration of Al3+, Zn2+, Fe2+, Fe3+, Cu2+, Hg2+ and Pb2+ the results of which disclosed the complexation compositions and complex stability constants of the novel ligands with these cations. The monoazapentathia crown ether showed sensitivity for Al3+ with linear range and detection limit of 2.6 × 10−6 M–2.6 × 10−5 M and 8.1 × 10−7 M, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号