首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The vibrational spectra of 2-cyclooctylamino-5-nitropyridine (COANP) solutions and the evolution of the spectra upon changing over from the solutions to solid-phase COANP are investigated. The bands observed in the spectra are assigned to the corresponding vibrational modes. The nature of the interaction of COANP with C60 and C70 fullerenes is elucidated by analyzing the transmission spectra of these compounds. No interaction of the COANP compound with C60 and C70 fullerenes is revealed under the studied conditions. It is assumed that the physical nature of this phenomenon can be associated with the formation of liquid-crystal clusters consisting of fullerene molecules.  相似文献   

2.
Phase transitions in two types of amorphous fullerene phases (C60–C70 (50/50) mixtures and an amorpous C70 fullerene phase) are studied via neutron diffraction at pressures of 2–8 GPa and temperatures of 200–1100°C. Fullerenes are amorphized by grinding in a ball mill and sintered under quasi-hydrostatic pressure in a toroidal-type chamber. Diffraction studies are performed ex situ. It is shown that the amorphous phase of fullerenes retains its structure at temperatures of 200–500°C, and amorphous graphite is formed at 800–1100°C with a subsequent transition to crystalline graphite. This process is slow in a mixture of fullerenes, compared to C70 fullerene. According to neutron diffraction data, the amorphous graphite formed from amorphous fullerene phases has anisotropy that is much weaker in a fullerene mixture.  相似文献   

3.
The reaction of C60, under ultrasonication, with various oxidants, such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and the oxone® monopersulfate compound, causes the oxidation of fullerenes at room temperature. The FAB-MS spectra and HPLC profile confirmed that the products of fullerene oxidation were [C60(O)n] (n=1~3 or n=1). C70 also reacted, under ultrasonication, with various oxidants, but the reaction rate of C70 was lower than that of C60.  相似文献   

4.
The stability of C60 and C70 fullerenes and C60 and C72 nanotubes devoid of 2–12 atoms of the cluster skeleton was theoretically studied. It was established that Cn molecules with an even number of atoms remain stable, which was confirmed by experimental studies of monomolecular decay of clusters with the number of atoms n≥30. The change in the internuclear distances and in the ionization potential of nanoclusters was determined depending on the number of eliminated atoms. Such defects were shown to decrease the ionization potential of nanoclusters by 0.5–0.8 eV. The electron spectrum was calculated within the Harrison semiempirical tight-binding model in the Goodwin modification. A new parametrization of interatomic matrix elements of the Hamiltonian and atomic terms for carbon nanoclusters was suggested.  相似文献   

5.
The photoionization of the C60 and C240 fullerenes by ultrashort electromagnetic pulses of subfemtosecond duration is studied. The probability for the process to occur during the action of the pulse as a function of the pulse duration is calculated for different carrier frequencies. The spectrum of photoelectrons emitted during the ionization of the fullerenes by a pulse with a corrected Gaussian shape is calculated.  相似文献   

6.
The effect of heating of the electronic subsystem on the thermal stability of C60 and C20 fullerenes and a (C20)2 cluster molecule is investigated theoretically. It is demonstrated that the excitation of electrons to upper energy levels in accordance with the Fermi-Dirac distribution function does not lead to a substantial change in the activation energy E a for decay of the C20 fullerene. The stability of the C60 fullerene and the (C20)2 cluster molecule likewise does not change radically. However, the inclusion of corrections associated with the finite sizes of the heat bath leads to the activation energy E a which is in better agreement with the calculated height of the potential barrier preventing the cluster decay.  相似文献   

7.
Polyimide-fullerene composite thin coatings are investigated using thermal desorption mass spectrometry in the temperature range 20–800°C. It is found that, at temperatures below the temperature of decom-position of the polymer matrix, thermally stimulated desorption of fullerene molecules is limited by the diffusion of fullerene molecules in the matrix. The diffusion coefficients and activation energies of diffusion of C60 and C70 fullerene molecules are determined from the experimental data on thermally stimulated desorption in the framework of several approaches. It is revealed that the diffusion of C70 molecules in the polyimide matrix is more hindered than the diffusion of C60 molecules in the same matrix.  相似文献   

8.
The electron and nuclear dynamics of C60 fullerenes irradiated with femtosecond laser pulses are investigated with photoelectron and photoion spectroscopy. The focus of this work is the detailed exploration of the population mechanism of Rydberg levels within the excitation process of neutral C60. The effect of excitation wavelength, intensity, chirp, and polarization on the kinetic energy distribution of photoelectrons in single-pulse experiments gives first insight into the underlying processes. In combination with time-resolved two-color pump-probe spectroscopy depending on either pump, or probe pulse intensity, a more complete picture of the interaction can be drawn. The results point towards a very interesting but nevertheless complex behavior including four steps: (i) non-adiabatic multielectron excitation of the HOMO (hu) → LUMO+1 (t1g) transition; (ii) thermalization within the hot electron cloud on a time scale below 100 fs, followed by a coupling of energy to vibrational modes of the molecule via doorway state(s); (iii) population of electronically excited Rydberg states by multiphoton absorption, and (iv) single photon ionization from the excited Rydberg states. This excitation process results in a characteristic sequence of photoelectron lines in the photoemission spectra. The comparison of the experimental results with recent theoretical work gives convincing evidence that non-adiabatic multielectron dynamics (NMED) plays a key role for the understanding of the response of C60 to short-pulse laser radiation.  相似文献   

9.
The stability of (C20)N metastable chains, where C20 fullerenes are joined by tight covalent bonds, is analyzed by numerical simulation using a tight-binding potential. Various channels of losing the chain-cluster structure of the (C20)N complexes have been determined including the decay of the C20 clusters, their coalescence, and the separation of one C20 fullerene from a chain. The lifetimes of the (C20)N chains with N = 3–7 for T = 2000–3500 K are directly calculated by the molecular dynamics method. It has been shown that, although the stability of the chains decreases with an increase in N, it remains sufficiently high even for N ? 1. An interesting lateral result is the observation of new (C20)N isomers with the combination of various intercluster bonds with the maximum binding energy of fullerenes in the chain.  相似文献   

10.
11.
Thin films of fullerenes (C60) were deposited onto silicon using matrix-assisted pulsed laser evaporation (MAPLE). The deposition was carried out from a frozen homogeneous dilute solution of C60 in anisole (0.67 wt%), and over a broad range of laser fluences, from 0.15 J/cm2 up to 3.9 J/cm2. MAPLE has been applied for deposition of fullerenes for the first time and we have studied the growth of thin films of solid C60. The fragmentation of C60 fullerene molecules induced by ns ablation in vacuum of a frozen anisole target with C60 was investigated by matrix-assisted laser desorption/ionization (MALDI). Our findings show that intact fullerene films can be produced with laser fluences ranging from 0.15 J/cm2 up to 1.5 J/cm2.  相似文献   

12.
Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years. The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear. In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca. 0.72 nm) through the membrane. Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale. Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane. After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane.
Graphical abstract ?
  相似文献   

13.
Two-dimensional systems of C20 fullerenes connected to each other by strong covalent bonds have been investigated. Several isomers differing in the type of intercluster bonds have been revealed. The lifetimes τ of the (C20) M × M complexes with M = 2 and 3 at T = 1800–3300 K have been directly calculated using the molecular dynamics method. It has been shown that these complexes lose their periodic cluster structure due usually to the coalescence of two or several neighboring C20 fullerenes. The activation energy of this process determined by analyzing the τ(T) dependence appears to be E a ≈ 2.5 eV in agreement with the calculations of the heights of the potential barriers preventing the coalescence. At high temperatures T > 2400 K, the decay of C20 fullerenes entering into the complex is possible.  相似文献   

14.
Deuterofullerites C60Dx have been studied by 2H and 13C NMR. These fullerites have two types of carbon–deuterium bonds: C–D terminal bonds, characterized by the quadrupole coupling constant (QCC) of 171 kHz, and –C ··· D ··· C– bridging bonds with a QCC of 56 kHz. The latter is responsible for the rigid lattice found in these fullerites, which is untypical of fullerenes. PACS 81.05.Tp; 82.56.Fk; 61.48.+c; 61.18.Fs; 61.10.Nz  相似文献   

15.
The morphology of C60 precipitates synthesized by using isopropyl alcohol (IPA) added with water was investigated in order to know the effect of water on the growth of C60 nanowhiskers (C60NWs) in C60–toluene–IPA solution systems. The stability of C60NWs decreased and granular crystals of C60 were formed in the solutions when IPA added with an excess amount of water was used in the liquid–liquid interfacial precipitation method. The C60NWs were found to be destabilized with time in the solutions added with water. The C60NWs dried in air showed similar Raman profiles irrespective of the use of IPA with and without water addition. The Raman profiles of granular C60 single crystals showed the base lines much flatter than those of C60NWs, indicating that C60NWs possess a disordered crystal structure. By optimizing the growth condition, short C60NWs with aspect ratios ranging from 3 to 10 and an average length of about 1.8 μm were successfully fabricated. The short C60NWs are expected to be applicable for electrodes of organic thick film solar cells.  相似文献   

16.
A new fully carbon nanocomposite material is synthesized by the immersion of carbon nanotubes in a fullerene solution in carbon disulfide. The presence of a dense layer of fullerene molecules on the outer nanotube surface is demonstrated by TEM and XPS. Fullerenes are redistributed on the nanotube surface during a long-term action of an electron beam, which points to the existence of a molecular bond between a nanotube and fullerenes. Theoretical calculations show that the formation of a fullerene shell begins with the attachment of one C60 molecule to a defect on the nanotube surface.  相似文献   

17.
The structure transformation occurring in fullerene film under bombardment by 50 keV C60+ cluster ions is reported. The Raman spectra of the irradiated C60 films reveal a new peak rising at 1458 cm−1 with an increase in the ion fluence. This feature of the Raman spectra suggests linear polymerization of solid C60 induced by the cluster ion impacts. The aligned C60 polymeric chains composing about 5–10 fullerene molecules have been distinguished on the film surface after the high-fluence irradiation using atomic force microscopy (AFM). The surface profiling analysis of the irradiated films has revealed pronounced sputtering during the treatment. The obtained results indicate that the C60 polymerization occurs in a deep layer situated more than 40 nm below the film surface. The deep location of the C60 polymeric phase indirectly confirms the dominant role of shock waves in the detected C60 phase transformation.  相似文献   

18.
We have experimentally studied for the first time the effect of photoinduced rotation of the plane of polarization for pulsed laser radiation in solutions of C70 fullerene in organic solvents and their mixtures. We have shown that the effect is observed for elliptical polarization of the laser radiation and is absent for linear polarization. We present the results of a study of the nonlinear optical characteristics of the C70 solutions. We discuss the physical mechanisms by which nonlinear gyrotropy is induced in solutions. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 93–99, January–February, 2009.  相似文献   

19.
20.
The quenching of the electronically excited states of various energy donors—Tb3+; 9,10-anthracene dibromide; and adamantanone—by C70 fullerene has been detected and analyzed. The quenching is characterized by anomalously high biomolecular quenching rate constants, which are obtained from the Stern-Volmer dependences of the energy-donor photoluminescence intensity on the concentration of the C70 molecules. It has been shown that the high efficiency of quenching by the C70 fullerene as compared to the C60 fullerene is due to the higher polarizability of the C70 molecule and large overlap integrals of the energy-donor photoluminescence spectra with the absorption spectrum of the C70 fullerene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号