首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The results of computer simulation of the dynamics of fullerene C20 at different temperatures are presented. It is shown that, although it is metastable, this isomer is very stable with respect to the transition to a lower energy configuration and retains its chemical structure under heating to very high temperatures, T ≈ 3000 K. Its decay activation energy is found to be E a ≈ 7 eV. Possible decay channels are studied, and the height of the minimum potential barrier to decay is determined to be U = 5.0 eV. The results obtained make it possible to understand the reasons for the anomalous stability of fullerene C20 under normal conditions.  相似文献   

2.
Two-dimensional systems of C20 fullerenes connected to each other by strong covalent bonds have been investigated. Several isomers differing in the type of intercluster bonds have been revealed. The lifetimes τ of the (C20) M × M complexes with M = 2 and 3 at T = 1800–3300 K have been directly calculated using the molecular dynamics method. It has been shown that these complexes lose their periodic cluster structure due usually to the coalescence of two or several neighboring C20 fullerenes. The activation energy of this process determined by analyzing the τ(T) dependence appears to be E a ≈ 2.5 eV in agreement with the calculations of the heights of the potential barriers preventing the coalescence. At high temperatures T > 2400 K, the decay of C20 fullerenes entering into the complex is possible.  相似文献   

3.
The stability of (C20)N metastable chains, where C20 fullerenes are joined by tight covalent bonds, is analyzed by numerical simulation using a tight-binding potential. Various channels of losing the chain-cluster structure of the (C20)N complexes have been determined including the decay of the C20 clusters, their coalescence, and the separation of one C20 fullerene from a chain. The lifetimes of the (C20)N chains with N = 3–7 for T = 2000–3500 K are directly calculated by the molecular dynamics method. It has been shown that, although the stability of the chains decreases with an increase in N, it remains sufficiently high even for N ? 1. An interesting lateral result is the observation of new (C20)N isomers with the combination of various intercluster bonds with the maximum binding energy of fullerenes in the chain.  相似文献   

4.
The stability of a C20@C80 nanoparticle and the rotation of its inner shell are studied theoretically within the tight-binding approximation. It is found that the C20 skeleton in the free state is described by space group D3d; in the case where C20 is placed into the C80(I h ) fullerene field, the space group of C20 is raised to I h due to isomerization. The total energy surface of the C20@C80 compound is scanned over two rotation angles. Based on an analysis of the surface relief and energy isoline map, orientational melting of the nanoparticle is predicted. A nanoparticle gyroscope—C20 rotating in the field of C80 at a certain relative orientation and energy supply—is also predicted to exist.  相似文献   

5.
The structure of a new allotropic form of carbon [C28]n having a simple cubic lattice and space group \(Pm \bar 3\) is proposed. The geometrical parameters of the building block of such a hypothetic crystal are preliminarily determined from DFT-PBE calculations of the cluster C8@(C20)8 and the polyhedral hydrocarbon molecule C8@(C20H13)8, in which the centers of the cubic clusters C8 coincide with the centers of the cluster C8@(C20)8 and of the molecule C8@(C20H13)8, respectively, and dodecahedral C20 carbon cages are located at the vertices of a cube. The energy of dissociation of the cluster C8@(C20)8 into a cubic cluster C8 and eight dodecahedral clusters C20 is calculated to be 1482 kcal/mol, and the energy of each C8-C20 bond is equal to 74.2 kcal/mol. The structure of the [C28]n crystal is refined using the DFT-PBE96/FLAPW method and optimized geometry. Calculations show that the crystal is a dielectric with an energy gap of 3.3 eV. The lattice parameter a of the crystal is equal to 5.6 Å, and its density is 3.0 g/cm3. The possible existence of analogous allotropic forms of elements Si and Ge is discussed. A method is proposed for designing a hypothetic allotropic form [C28]n from C20(CH3)8 molecules with T h symmetry.  相似文献   

6.
It is demonstrated that in fullerene C70, which can be considered as a deformed fullerene C60 in some mean sense there is a withdrawal of an Electrodynamical forbiddance of a strong quadrupole light-molecule interaction, which is realized in the fullerene C60. This situation occurs because of the reduction of symmetry of C60 from the icosahedral symmetry group Yh to the group D5h. The withdrawal results in appearance of the lines in the SERS spectra of C60, which are forbidden in usual Raman scattering and are active in the infrared absorption spectra. The experimentally measured SERS spectra of C70 demonstrates existence of such lines that strongly confirms our ideas about the dipole-quadrupole SERS mechanism.  相似文献   

7.
Full-electron calculations of the electronic structure of the TiSi2 compound in the structural modification C49 are performed using the augmented-plane-wave method. The total energy, the electronic band structure, and the density of states are calculated for an extended translational unit cell Ti4Si8, which is formed during the growth of a silicon nanowire on a p-Si substrate. Calculations are also carried out for two orthorhombic unit cells of the nonstoichiometric compositions Ti3Si9 and Ti5Si7. The energies of the interatomic bonds are determined to be E Si-Si = 1.8 eV, E Ti-Ti = 2.29 eV, and E Ti-Si = 4.47 eV. The dependence of the total energy of the unit cell E tot(V) on the unit cell volume V is obtained by optimizing the unit cell volume. The bulk modulus B 0 = 132 GPa is determined from the Murnaghan equation of state for solids and the dependence E tot (V). This value of the bulk modulus is used to estimate the activation energy for interstitial diffusion of silicon atoms Q i(Si) ≈ 0.8 eV.  相似文献   

8.
The results of x-ray structural studies of the [N(C2H5)4]2CdBr4 crystal at low temperatures are presented. The unit cell parameters and the thermal expansion coefficients along the main crystallographic directions are measured at temperatures in the range from 90 to 320 K. The integrated intensities of the diffraction reflections are investigated as a function of the temperature. It is shown that the curves a = f(T), c = f(T), I 500 = f(T), and I 006 = f(T) at temperatures T 1 ≈ 174 K and T 2 ≈ 226 K exhibit anomalies in the form of abrupt changes in the lattice parameters and the diffraction reflection intensities. This indicates that the [N(C2H5)4]2CdBr4 crystal undergo phase transitions at these temperatures. Moreover, there is an anomaly in the form of a small maximum at the temperature T 3 = 293 K.  相似文献   

9.
The relaxation electronic phenomena occurring in TlGa0.99Fe0.01Se2 single crystals in an external dc electric field are investigated. It is established that these phenomena are caused by electric charges accumulated in the single crystals. The charge relaxation at different electric field strengths and temperatures, the hysteresis of the current-voltage characteristic, and the electric charge accumulated in the TlGa0.99Fe0.01Se2 single crystals are consistent with the relay-race mechanism of transfer of a charge generated at deep-lying energy levels in the band gap due to the injection of charge carriers from the electric contact into the crystal. The parameters characterizing the electronic phenomena observed in the TlGa0.99Fe0.01Se2 single crystals are determined to be as follows: the effective mobility of charge carriers transferred by deep-lying centers μf=5.6×10?2 cm2/(V s) at 300 K and the activation energy of charge transfer ΔE=0.54 eV, the contact capacitance of the sample C c =5×10?8 F, the localization length of charge carriers in the crystal d c =1.17×10?6 cm, the electric charge time constant of the contact τ=15 s, the time a charge carrier takes to travel through the sample t t =1.8×10?3 s, and the activation energy of traps responsible for charge relaxation ΔE σ = ΔE Q = 0.58 eV.  相似文献   

10.
The reaction of C60, under ultrasonication, with various oxidants, such as 3-chloroperoxy benzoic acid (Fluka 99%), 4-methyl morpholine N-oxide (Aldrich 97%), chromium (VI) oxide (Aldrich 99.9%), and the oxone® monopersulfate compound, causes the oxidation of fullerenes at room temperature. The FAB-MS spectra and HPLC profile confirmed that the products of fullerene oxidation were [C60(O)n] (n=1~3 or n=1). C70 also reacted, under ultrasonication, with various oxidants, but the reaction rate of C70 was lower than that of C60.  相似文献   

11.
It is demonstrated that 50% substitution of vanadium for molybdenum in the pyrochlore lattice of the complex oxide Y2(V x Mo1 ? x )2O7 results in a transition from the spin-glass ground state (at x = 0) to the ferromagnetic state in Y2VMoO7 (a = 10.1645(2) Å, T C = 55 K). The Gd2V0.67Mo1.33O7 compound (a = 10.2862(3) Å) is a ferromagnet with T C (84 K) exceeding that of undoped Gd2MnO2O7.  相似文献   

12.
The nonlinear refraction in thin films of fullerene C60 (100 nm) is studied by the Z-and RZ-scan methods using the second harmonic of a picosecond Nd:YAG laser (λ = 532 nm, τ = 55 ps). The combined effect of n2 (self-focusing of laser radiation) and n4 (self-defocusing) is analyzed. Mechanisms responsible for the nonlinear refraction in films are discussed.  相似文献   

13.
14.
The stability of C60 and C70 fullerenes and C60 and C72 nanotubes devoid of 2–12 atoms of the cluster skeleton was theoretically studied. It was established that Cn molecules with an even number of atoms remain stable, which was confirmed by experimental studies of monomolecular decay of clusters with the number of atoms n≥30. The change in the internuclear distances and in the ionization potential of nanoclusters was determined depending on the number of eliminated atoms. Such defects were shown to decrease the ionization potential of nanoclusters by 0.5–0.8 eV. The electron spectrum was calculated within the Harrison semiempirical tight-binding model in the Goodwin modification. A new parametrization of interatomic matrix elements of the Hamiltonian and atomic terms for carbon nanoclusters was suggested.  相似文献   

15.
Photoionization of the Xe atom and Xe@C60 molecule have been studied usingthe random phase approximation with exchange (RPAE) method. The Xe atom was described byrelaxed orbitals including overlap integrals. The C60 fullerene has beenrepresented by an attractive short range spherical well with potentialV(r), given byV(r) =  ?V 0 forr i  < r < r o ,otherwise V(r) = 0 wherer i andr o are respectively, the inner and outerradii of the spherical shell. The time independent Schrödinger equation was solved usingboth regular and irregular solutions and the continuous boundary conditions atr i andr o . The results demonstrate improvementto previous calculations for both the Xe atom and Xe@C60 molecule and comparevery well with the recent experimental data.  相似文献   

16.
This paper reports on the results of complex investigations into the structural, thermodynamic, and dilatometric properties of the C60 dimerized phase prepared under compression of a C60 fullerite at a pressure up to 8 GPa and a temperature of 290 K. It is demonstrated that the dimerized phase has a face-centered cubic structure with a lattice parameter a=14.02±0.05 Å. The dimeric structure of the studied sample is confirmed by x-ray diffraction analysis. According to the dilatometric data, the volume jump observed in the vicinity of the orientational transition for the dimerized phase is estimated to be approximately 30 times less than that for the C60 fullerite. The temperature dependence of the heat capacity of the (C60)2 crystalline dimer is examined using precision adiabatic vacuum calorimetry under normal pressure in the temperature range from T → 0 K to 340 K. The results obtained are used in the calculations of thermodynamic functions, namely, the heat capacity C p 0 (T), the enthalpy H0(T)-H0(0), the entropy S0(T), and the Gibbs function G0(T)-H0(0). The fractal dimension D is determined as a function of the heat capacity. The standard entropy of the formation of the (C60)2 crystalline dimer from a simple compound (graphite) at T=298.15 K and normal pressure is calculated.  相似文献   

17.
The dependences of the path of leading dislocations in indentation rosette rays on the load, the loading time, and the indentation temperature in the range 260 < T ≤ 373 K were studied for C60 fullerite crystals. The dislocation mobility parameters are estimated: the exponent m characterizing the stress dependence of the dislocation velocity depends on the structural perfection of the crystal and ranges from 2.3 to 24.5, the activation energy for dislocation motion ΔH 0 ? (0.4–0.5) eV, and the velocity of leading dislocations in indentation rosette rays v l ? 10?5?10?4 cm/s. The data from micro-and macromechanical experiments are shown to agree with each other. The dislocation mobility is assumed to be controlled by the dislocation interaction with local barriers.  相似文献   

18.
The results of a partial-wave analysis of the angular distributions for the process γpηp over the energy range up to 2 GeV are presented. Reliable estimates of the Breit-Wigner parameters of the S11(1535) resonance, as well as the energy dependence of the real and imaginary parts of the electric dipole amplitude E0+ and its phase, are derived from the energy dependence of the regression coefficient a0(W).  相似文献   

19.
The molecular dynamics of C60 crystals was studied by inelastic neutron scattering at T=290 K, i.e., above the first-order phase transition temperature (TC≈260 K), in the region of free C60-spheroid rotation in the lattice. The energy broadening of the original neutron spectrum 2Γ0≈0.1 meV for a momentum transfer q=2 Å?1 is in agreement with NMR data on the rotational relaxation time of the molecule τ~10?11 s~ ?Γ0. This effect was observed to decrease in magnetic fields H=2.5–4.5 kOe applied along the scattering vector: ΓH=0.7Γ0. The slowing-down of the molecular rotation is discussed in connection with the interaction of a magnetic field with the molecular currents, which fluctuate when the C60 cage rotates.  相似文献   

20.
The energies of formation of vacancies in the carbon and silicon sublattices, the independent elastic constants, the all-round compression, shear and Young’s moduli, and the anisotropy coefficients are determined for the complete and nonstoichiometric cubic phases of 3C-SixCy (x, y = 1.0–0.75) by ab initio methods of the band theory. In the formalism of the density functional perturbation theory (DFPT), the phonon dispersion dependences are obtained for these phases (the comparison with the experiment is given for the complete phase). It is shown that the mechanical characteristics of the phases become strongly anisotropic upon the transition from 3C-SiC0.875 to 3C-SiC0.75. It is established from the analysis of the phonon dispersion curves that the 3C-SiC0.875 and 3C-SiC0.75 phases, in contrast to the complete 3C-SiC phase, are dynamically unstable at T = 0 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号