首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The dynamic behavior of ac arcs in a supersonic nozzle has been investigated. The close coupling between the arc and its external flow determines the arc characteristics as well as the flow transients within the nozzle in a gas-blast circuit breaker. For affinely related nozzles, the dynamic behavior of the system is found to be fully determined by two nondimensional parameters: the nozzle coefficient N [17] and the nondimensional frequency ? which is the product of the angular frequency of the current and the time scale of the system. Of these two parameters, ? controls the qualitative behavior of the arc and its external flow. When ? is of the order of 10-2 or less, a quasi-steady period of arcing exists. Arc modeling can then be conveniently divided into a quasi-steady-state (hence dc) phase and a current-zero period.  相似文献   

2.
A simplified arc model based on the integral method is used to study the arc behavior in a supersonic nozzle. Emphasis is placed on the energy balance of the overall arc, which extends to the arc thennal boundary. Similarity rules for aerodynamic and electrical quantities are established, and a quantitative definition of current zero period is given. Computations have been done for two nozzle geometries. The nozzle geometry plays the role of shaping the arc, thereby affecting the axial electric field distribution. Performance curves in terms of the critical rate of rise of recovery voltage (rrrv)c and di/dt at current zero are established. It has been found that (rrrv)c can be seriously affected by the distortion of the current waveform near current zero due to arc-circuit interaction. When experimentally measured current waveform is used as an input, a good quantitative agreement is obtained for the Liverpool orifice arc [1] between theory and experimental results. A satisfactory agreement has also been achieved for the axial electric field distribution without adding a turbulence term into the energy equation. The limitations of the present arc model is also discussed in detail.  相似文献   

3.
For pt.I see ibid., vol.18, no.1, p.91-101, 1990. A supersonic flow field with a 5.5-cm-long and ≈2.2-mm-thick cylindrical arc plasma column was observed with a four-mirror Schlieren optical system in dual-flow nozzle geometries. For both the orifice-type nozzle and the two dimensional convergent-divergent nozzle, the arc current was varied from 45 to 110 A. The optical cold-flow-plasma boundary displayed a sharp and laminar character in both nozzles, and a sharply defined, almost-constant-diameter, quiet arc is observed between the nozzles. Downstream of the nozzle throat the arc expands and assumes a conical shape. In this region, the fringe formation inside the arc is still clear, which is an indication of the laminar nature of the plasma. However, the arc boundary is not as distinct. A cooler arc is observed downstream of the nozzle throat. Using the experimentally determined axial static pressure and cold-flow mass flux rate distributions of pt.I and the channel-flow model with constant arc temperature, the energy integral was solved for the arc radius as a function of the axial distance. From this, the arc electric field strength, voltage, resistance, and power were determined, and the total heat transfer was related to the arc power. Good agreement between the calculated values and experimental data was observed  相似文献   

4.
The paper is devoted to the study of compressible flows and transonic shocks in diverging nozzles in the framework of the full compressible Euler system. Consider a nozzle having a shape as a diverging truncated sector with generic opening angle: if the upstream flow at the entrance is supersonic and is near to an axial symmetric flow, and if all parameters of the upstream flow and the receiver pressure at the exit are suitably assigned, then a transonic shock appears in the nozzle. To determine the transonic shock and the flow in the nozzle leads to a free boundary value problem for a nonlinear partial differential equation. We prove that the receiver pressure can uniquely determine the location of the transonic shock, as well as the flow behind the shock. Such a conclusion was conjectured by Courant and Friedrichs, and is confirmed theoretically in this paper for the divergent nozzles. The main advantage of this paper compared with the previous studies on this subject is that the section of the nozzle is allowed to vary substantially, while the transonic shock is not assumed to pass a fixed point. The situation coincides with the requirement in Courant-Friedrichs’ conjecture. To describe the compressible flow we use the full Euler system, which is purely hyperbolic in the supersonic region and is elliptic-hyperbolic in the subsonic region. Solving the free boundary value problem of an elliptic-hyperbolic problem forms the main part of this paper. In our demonstration some new approaches, including the introduction of a pseudo-free boundary problem and the corresponding relaxation, design of a delicate double iteration scheme, are developed to overcome the difficulties caused by the divergence of the nozzle.  相似文献   

5.
A steady state nozzle arc model based on the boundary layer integral method is established and scaling laws are derived. For affinely related nozzles, the solution is uniquely determined by a nozzle coefficient N, which is related to the stagnation conditions, the arc current, and the dimensions of the nozzle. Tests have been performed on nozzle arcs in air using two geometricaly similar nozzles at three stagnation pressures. A good agreement between theory and experiment is obtained which indicates that circuit-breaker arcs can be scaled. To avoid nozzle clogging, the nominal current density at the throat (I/At) should not exceed the highest permissible nominal current density at the throat. For all affinely related nozzles, this upper limit of current density at the throat is proportional to ?p0?t, where p0 is the stagnation pressure and Zt the distance of the throat from the nozzle entrance. The overal arc voltage exhibits the precurrent-zero static behavior as indicated by Browne's composite arc model.  相似文献   

6.
This paper elaborates upon a previous investigation into the influence of external electric and magnetic fields on a flow through a supersonic diffuser. The aim of the present study is to correlate a change in the configuration of a shock wave emerging near the diffuser inlet at magnetohydrodynamic interaction with the amount of force and energy actions and with total pressure losses. For this purpose, the main parameters of the shock wave structure and the total pressure are measured at the diffuser outlet when the flow is subjected to magnetic and electric fields of various strengths at different routes of current passage. In the experiments, a shock tube with a supersonic nozzle is employed. The shock tube forms a flow behind the shock wave reflecting from the end of the tube, which terminates in the nozzle. The diffuser is located directly downstream of the nozzle. The investigation is carried out in xenon. The flow is subjected to external fields at the inlet of the diffuser. The shock wave structure is visualized by frame sweeping of Schlieren patterns of the flow. The total pressure is measured with a piezoelectric transducer located at the end of the channel. The results obtained make it possible to optimize the action on the flow in terms of power consumption and total pressure losses for a given design of the diffuser.  相似文献   

7.
Arc-shock interaction in a supersonic nozzle has been investigated for a current range from 200 to 1500 A and for three pressure ratios. The adverse pressure gradient associated with the shock causes flow separation and a broadening of arc cross section. Compared with the shock position in the absence of the arc, the shock center is moved toward upstream and to a region close to the wall. The shock is no longer plane. The center of the shock is not very sensitive to the current, but the shock strength reduces when the current is increased, V-I characteristics under shock conditions are slightly modified  相似文献   

8.
Experimental data for magnetohydrodynamic (MHD) action on a supersonic nitrogen flow about an axisymmetric model are presented. The experiments were carried out in the Big Shock Tube (Ioffe Physical-Technical Institute), at the end of which a test section equipped with a supersonic nozzle was mounted. A test conic model coupled with a cylinder is attached to the output cross section of the nozzle. A magnetic field is produced by a solenoid placed on the cylindrical part of the model through which a pulsed current due to an external voltage source discharging passes. Electrodes on the conic part of the model initiate a gas discharge, which rotates about the axis of the model in the solenoidal magnetic field. The influence of the magnetic field on the gasdynamic pattern of the flow near the model and on the heat flux toward its surface is investigated. Schlieren patterns of the flow about the model, photographic scans of the discharge glow, and heat flux measurements are taken. It is found that the magnetic field has an effect on the gasdynamic pattern of the flow near the model and on the heat flux toward its surface. The dependence of MHD effects on the external voltage polarity is also revealed.  相似文献   

9.
介绍了一种用于"阳"加速器的超音速单壳层喷气Z箍缩负载。利用快响应压力探针对喷气负载产生的超音速流场进行了测量,获得了流场中各个位置的冲击压力以及超音速喷嘴前端的驻室压力,结合流体力学公式,给出了流场中的压力和密度分布。气流的径向密度剖面显示,气体壳层的位置随轴向位置的变化而存在差异,并且随着到喷嘴距离的增加,轴心处的气流密度不断增加。对密度分布的径向积分结果表明,气流在靠近喷嘴处的线质量密度最大,距喷嘴越远,线质量密度越小。利用单壳层超音速喷气负载,在"阳"加速器上进行了喷气Z箍缩内爆实验,对内爆过程进行了初步分析,并利用雪耙模型计算了等离子体壳层的内爆轨迹,计算结果与实验测量较好地符合。  相似文献   

10.
A method for ionizing a supersonic air flow is developed to obtain a flow conductivity sufficient for a magnetohydrodynamic (MHD) interaction and generation of a magnetically induced current in a supersonic nozzle. The efficiencies of several (high-frequency, multiple-pulse high-voltage, and combined) methods for initiating a gas discharge used for ionizing air are compared. The supersonic air flow is ionized by a pulse-periodic high-voltage discharge producing an air plasma with a conductivity of up to 20 S/m. The experimentally obtained magnetically induced current of 0.1 A is smaller than the rated value owing to the Hall effect and the electrode voltage drop. The theoretical possibility of obtaining a magnetically induced current in a supersonic air flow is demonstrated; such currents can subsequently be used for controlling the flow in air inlets of aircraft.  相似文献   

11.
An experimental investigation of the steady-state low current air arcs in a dual-flow nozzle system is presented. The cold flow field with no arc was determined for various nozzle geometries, i.e. two- and three-dimensional and orifice nozzles, and nozzle pressure ratios. Supersonic flow separation and oblique and detached shock waves were observed in the flow field. Using a finite-element computer program, the Mach number contours were determined in the flow field for various nozzle-gap spacings and pressure ratios. In addition, the DC arc voltage and current measurements were made for an electrode gap spacing of ≈5.5 cm and current levels of I≈25, 50, and 100 A for the three nozzle geometries. The arc voltage and arc power increased rapidly as the flow speed increased from zero to sonic velocity at the nozzle throat. The shock waves in the converging-diverging nozzles resulted in a decrease in the overall resistance by about 15%  相似文献   

12.
分析了超音速喷嘴内部的流动机理并研究了超音速喷嘴的设计方法,对某液体火箭发动机用氢涡轮超音速喷嘴叶栅进行了改型设计。设计采用尖边喉部和光滑过渡喉部两种方法,其中光滑过渡喉部喷嘴型线设计采用具有局部修改能力的三次非均匀B样条曲线。对超音速喷嘴叶栅复杂内流的全三维数值模拟结果表明:改型叶栅流动性能明显改善,效率提高,光滑过渡喉部喷嘴性能优于尖边喉部喷嘴。  相似文献   

13.
An experimental and theoretical study on ablation controlled arcs in cylindrical tubes is presented. Measuring techniques for stagnation pressure, electric field strength, mass ablation rate, and arc cross section are described with which a comprehensive set of experimental data is obtained for blackened PTFE as a reference material. These data are interpreted with an isothermal two-zone model that consistently accounts for the balance of mass and axial momentum and yields simple scaling laws for the arc characteristics. Consistent agreement with the experimental data is found for an arc temperature TA = 19 000 ± 2000 K, a vapor layer temperature Tv = 3400 ± 200 K, and a transparently radiated fraction of the arc power of v = 0.32 ± 0.03. The vapor temperature can be explained with a photoablation mechanism. The ablation arc model allows quantifying of the phenomena related to nozzle clogging in gas-blast circuit breakers, namely flow blocking and reverse flow heating. How these phenomena determine the pressure rise in self-blast circuit breakers is shown.  相似文献   

14.
The flow of a nonequilibrium gas-discharge plasma around a semicylindrical body is studied. The aim of the study is to see how a change in the degree of nonequilibrium of the incoming plasma changes the separation distance between a shock wave and the body. Experiments are carried out with a supersonic nozzle into which a semicylindrical body is placed. The inlet of the nozzle is connected to a shock tube. In the course of the experiment, electrodes built into the wall of the nozzle initiate a gas discharge in front of the body to produce an additional nonequilibrium ionization in the stationary incoming supersonic flow. The discharge parameters are selected such that the discharge raises the electron temperature and still minimizes heating of the gas. The degree of nonequilibrium of the flow varies with gas-discharge current. Diagnostics of the flow is carried out with a schlieren system based on a semiconductor laser. The system can record flow patterns at definite time instants after discharge initiation.  相似文献   

15.
Basic methods for obtaining laser jet thrust in the supersonic regime corresponding to the supersonic flow in the jet nozzle are analyzed. It is shown that the method based on the interaction of a laser ablative jet with the supersonic flow is promising. In this case, laser thrust is formed due to additional acceleration of the flow behind the ablation region. Numerical simulation of the flow in a parabolic nozzle is employed to demonstrate the possibility of effective formation of laser thrust at a level of 3 × 10?3 N/W.  相似文献   

16.
Results are reported of experiments performed on a model air-blast circuit breaker to determine the distribution of voltage along the axis of the arc gap during the current zero period, following half sinusoidal current pulses of frequency 85 Hz. The air-blast was sustained by a reservoir pressure of 6.89 × 105 N/m2. Measurements were made following peak currents of 3 and 8 kA, with copper and carbon upstream cathodes, different separations of upstream cathode from nozzle inlet and different conditions downstream of the nozzle throat. The results have enabled the conductance decays at various axial positions to be determined and these have been related to the improved circuit breaking performance observed by other authors when the nozzle and arc gap geometries are optimized. Although a detailed theoretical analysis awaits the measurement of other fundamental plasma properties, an approximate evaluation of the role played by various basic processes has been made.  相似文献   

17.
The scaling-down of plasma spray torches is connected with problems of anodic arc attachment fluctuations. It Is known that thermally constricted arcs in molecular gases generate unstable anodic arc roots in the nozzle of the torch. Moreover, using a usual plasma spray torch at reduced electrical power level in an argon-hydrogen gas mixture at a pressure of about 120 mbar, the arc is strongly influenced by hydrodynamic forces. Especially, its long time behavior shown by the arc voltage course is very variable and nonreproducible. It is the purpose of this work to optimize the nozzle geometry and the gas flow rate in order to obtain stabilized operating conditions of the plasma torch for an arc current of 100 A. It will be shown that the design of the entrance region and the diameter of the anodic nozzle influence the are column motion as well as the level and the frequency of the voltage fluctuations. With a particularly modified anodic nozzle, stable and reproducible operating conditions of the plasma torch, which is used to synthesize diamond layers, will be obtained  相似文献   

18.
The ideal gas exhaustion from an infinite volume into a gas at rest through a supersonic conical Laval nozzle is considered. The problem was solved numerically by steadying in time in a unified formulation for the regions inside the nozzle and in the ambient environment. In such a statement, the nozzle outlet section is no internal boundary of the region under consideration, and there is no need of specifying the boundary conditions here. Local subsonic zones arising in the flow lie inside the region under consideration, which eliminates the possibility of using a marching technique along one of the coordinates. The numerical solution is constructed by a unified algorithm for the entire flow region, which gives a possibility of obtaining a higher accuracy. The computations are carried out in the jet initial interval, where, according to monograph [1], the wave phenomena predominate over the viscous effects. The exhaustion process is described by the system of gas dynamics equations. Their solution is constructed with the aid of a finite difference Harten’s TVD (Total Variation Diminishing) scheme [2], which has the second approximation order in space. The second approximation order in time is achieved with the aid of a five-stage Runge-Kutta method. The solution algorithm has been parallelized in space and implemented on the multi-processor computer systems of the ITAM SB RAS and the MVS-128 of the Siberian Supercomputer Center of SB RAS. The influence of the semi-apex angle of the nozzle supersonic part and the pressure jump between the nozzle outlet section and the ambient environment on the flow in the initial interval of a non-isobaric jet is investigated in the work. A comparison with experimental data is presented. The computations are carried out for the semi-apex angles of the nozzle supersonic part from 0 (parallel flow) to 20 degrees. For all considered nozzles, the Mach number in the nozzle outlet section, which was computed from the one-dimensional theory, equaled three. Computations showed that in the case of flow acceleration in a conical supersonic nozzle, its geometry is one of the main factors determining the formation of the jet initial interval in ambient environment.  相似文献   

19.
A technique for designing the supersonic annular inlets with isentropic deceleration surfaces is considered. The contour of an isentropic supersonic nozzle constructed by the method of characteristics for an inviscid gas flow with given uniform parameters at the inlet and at the outlet is used as the basic configuration of the inlet. The reversed flow of a viscous gas is computed with the aid of numerical techniques in the contour under consideration and the real operational characteristics of the obtained inlet of a fixed geometry are determined in the range of the conditions of its application. In the process of computations, the minimum cross-sectional sizes are selected, which ensure the inlet start without a detached bow shock at the entrance.  相似文献   

20.
Adopting a transient arc analyzing program, the authors analyzed the axial distribution of arc characteristics near the current-zero point, proving that while almost all portions of total arc resistance were shouldered in downstream arc, zero conductivity was achieved in the nozzle throat arc. It was also proved that in the presence of transient recovery voltage (TRV) with initial fluctuations, such as initial TRV (ITRV), an interruption was accomplished by combined effects of the downstream and the nozzle throat arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号