首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 731 毫秒
1.
This paper describes the automated in situ trace element analysis of solid materials by laser ablation (LA) inductively coupled plasma mass spectrometry (ICP-MS). A compact computer-controlled solid state Nd:YAG Merchantek EO UV laser ablation (LA) system has been coupled with the high sensitivity VG PQII S ICP-MS. A two-directional communication was interfaced in-house between the ICP-MS and the LA via serial RS-232 port. Each LA-ICP-MS analysis at a defined point includes a 60 s pre-ablation delay, a 60 s ablation, and a 90 s flush delay. The execution of each defined time setting by LA was corresponding to the ICP-MS data acquisition allowing samples to be run in automated cycle sequences like solution auto-sampler ICP-MS analysis. Each analytical cycle consists of four standards, one control reference material, and 15 samples, and requires about 70 min. Data produced by Time Resolved Analysis (TRA) from ICP-MS were later reduced off-line by in-house written software. Twenty-two trace elements from four reference materials (NIST SRM 613, and fused glass chips of BCR-2, SY-4, and G-2) were determined by the automated LA-ICP-MS method. NIST SRM 610 or NIST SRM 613 was used as an external calibration standard, and Ca as an internal standard to correct for drift, differences in transport efficiency and sampling yield. Except for Zr and Hf in G-2, relative standard deviations for all other elements are less than 10%. Results compare well with the data reported from literature with average limits of detection from 1 ng x g(-1) to 455 ng x g(-1) and less than 100 ng x g(-1) for most trace elements.  相似文献   

2.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

3.
Of all the inorganic mass spectrometric techniques, laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) plays a key role as a powerful and sensitive microanalytical technique enabling multi- element trace analysis and isotope ratio measurements at trace and ultratrace level. LA-ICP-MS was used to produce images of detailed regionally-specific element distribution in 20 microm thin sections of different parts of the human brain. The quantitative determination of copper, zinc, lead and uranium distribution in thin slices of human brain samples was performed using matrix-matched laboratory standards via external calibration procedures. Imaging mass spectrometry provides new information on the spatially inhomogeneous element distribution in thin sections of human tissues, for example, of different brain regions (the insular region) or brain tumor tissues. The detection limits obtained for Cu, Zn, Pb and U were in the ng g(-1) range. Possible strategies of LA-ICP-MS in brain research and life sciences include the elemental imaging of thin slices of brain tissue or applications in proteome analysis by combination with matrix-assisted laser desorption/ionization MS to study phospho- and metal- containing proteins will be discussed.  相似文献   

4.
Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described. A dual argon flow of the carrier gas and nebulizer gas is used. A dry aerosol produced by laser ablation (LA) of biological sample and a desolvated aerosol generated by pneumatic nebulization (PN) of standard solutions are carried by two different flows of argon as carrier or nebulizer gas, respectively and introduced separately in the injector tube of a special ICP torch, through two separated apertures. Both argon flows are mixed directly in the ICP torch. External calibration via defined standard solutions before analysis of single hair was employed as calibration strategy. A correction factor, calculated using hair with known analyte concentration (measured by ICP-MS), is applied to correct the different elemental sensitivities of ICP-MS and LA-ICP-MS. Calibration curves are obtained by plotting the ratio of analyte ion M+/34S+ ion intensities measured using LA-ICP-MS in dependence of analyte concentration in calibration solutions. Matrix-matched on-line calibration in LA-ICP-MS is carried out by ablating of human hair strands (mounted on a sticky tape in the LA chamber) using a focused laser beam in parallel with conventional nebulization of calibration solutions. Calibrations curves of Li, Na, Mg, Al, K, V, Cr, Mn, Fe, Ni, Co, Cu, Zn, Sr, Mo, Ag, Cd, I, Hg, Pb, Tl, Bi and U are presented. The linear correlation coefficients (R) of calibration curves for analytes were typically between 0.97 and 0.999. The limits of detection (LODs) of Li, V, Mn, Ni, Co, Cu, Sr, Mo, Ag, Ba, Cd, I, Hg, Pb, Bi and U in a single hair strand were in the range of 0.001-0.90 μg g−1, whereas those of Cr and Zn were 3.4 and 5.1 μg g−1, respectively. The proposed quantification strategy using on-line solution-based calibration in LA-ICP-MS was applied for biomonitoring (the spatial resolved distribution analysis) of essential and toxic metals and iodine in human hair and mouse hair.  相似文献   

5.
A laser ablation system using a Nd:YAG laser was coupled both to a quadrupole inductively coupled plasma (ICP) mass spectrometer and to a double-focusing sector field ICP mass spectrometer. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was applied for the determination of long-lived radionuclides in a concrete matrix. The investigated samples were two laboratory standards with a concrete matrix, which we doped with different long-lived radionuclides (e.g. 99Tc, 232Th, 233U, 237Np) from the ng g−1 to μ g−1 concentration range and an undoped concrete material (blank). Detection limits for long-lived radionuclides in the 10 ng g−1 range are reached for LA-ICP-MS using the quadrupole mass spectrometer. With double-focusing sector field ICP-MS, the limits of detection are in general one order of magnitude lower and reach the sub ng g−1 range for 233U and 237Np. A comparison of mass spectrometric results with those of neutron activation analysis on undoped concrete sample indicates that a semiquantitative determination of the concentrations of the minor and trace elements in the concrete matrix is possible with LA-ICP-MS without using a standard reference material.  相似文献   

6.
电感耦合等离子体质谱法测定花生中34种元素   总被引:3,自引:0,他引:3  
建立了微波消解-碰撞/反应池(ORS)电感耦合等离子体质谱仪(ICP-MS)同时测定花生中的Na、Mg、Ca、Fe、Se、Mo和稀土元素等34种元素的分析方法。样品经微波消解后,在线加入内标元素45Sc、72Ge、103Rh、115In和209Bi消除基体效应,应用碰撞反应池技术,以4.5 mL/min流速的氦气作为碰撞反应气,有效消除多原子离子产生的质谱干扰。各元素的检出限为0.0003~17.37ng/mL,相对标准偏差(RSD)低于2.9%;标准物质的测定值均在标准值范围内,结果令人满意。该方法可用于花生中多种元素的同时测定。  相似文献   

7.
The possibility of quantitative elemental analysis of solids by laser ablation - inductively coupled plasma - mass spectrometry (LA-ICP-MS) has been investigated. The solids were mixed with a flux and fused to a glass bead so that a similar matrix composition would be obtained for the different samples (matrix matching), and an internal standard could be added. Strontium, present in the flux materials, was found to be suitable as the internal standard. Two major problems were experienced in the analysis: memory effects and interference from polyatomic ions. The memory effects were probably due to deposits of particles in the transfer tubes between the laser ablation cell and the ICP torch. At masses below 80 m/z, strong interferences from polyatomic ions caused serious problems in the quantification and, for elements studied in that mass region, detection limits were poor. The technique was further applied more specifically to the determination of rare earth elements in geological materials, for which detection limits varied from 0.02 to 3 mg/kg. Quantitative analysis, independent of the kind of sample material, proved possible.  相似文献   

8.
A simple and rapid procedure using a glue technique has been developed for the preparation of stable targets from powder samples for bulk analysis by LA-ICP-MS. The procedure was evaluated for the analysis of trace elements in SiC, of rare-earth elements in different types of silicate (rocks, sediments, and soils), and of Au and platinum-group elements in geological silicates. The test analysis was conducted using an IR laser in combination with a quadrupole mass spectrometer. The recommended preparation procedure offers the possibility of different types of calibration, for example application of certified reference samples in combination with prepared spiked samples on a base of a natural or synthetic matrix, or addition calibration. The resulting calibration functions are linear over a range of several decades. The trueness of the results was evaluated by use of certified reference samples. Analytical concentration ranges, detection limits, and the relative standard deviations are reported.  相似文献   

9.
Inductively coupled plasma mass spectrometry (ICP-MS) was evaluated for major, minor, trace, and ultra-trace elemental analyses of individual tree rings. The samples were obtained from an old-growth Douglas fir (Pseudotsuga menziesii) growing 15 km northeast of Mount St. Helens volcano, Washington, USA and from trees at various other North American sites. Samples were brought into solution by microwave digestion in sealed Teflon vessels. Eightly percent of elements from Li to U had detection limits in the solid (wood) below 8.0 ng g–1 (parts per billion, ppb). When selected element concentrations in the Mount St. Helens samples are plotted against time, two anomalous peaks occur at A. D. 1478 and 1490 that closely correlate with past eruptions of the volcano. These preliminary results show that ICP-MS is a rapid and sensitive analytical method for multielemental analyses of individual tree rings.  相似文献   

10.
To tackle the several problematic polyatomic interferences in inductively coupled plasma mass spectrometry (ICP-MS), we have developed a software approach based on data reduction of the measured total mass spectrum through multicomponent analysis (MCA). The approach leans on a working knowledge of interferents that are likely to be encountered in a sample matrix, which composition is known by virtue of the total mass spectrum and knowledge of applied solvents. The full isotopic patterns for all elements and expected interferents are used in the modelling MCA matrix of 250 masses × 105 species at maximum. Polyatomic abundances are calculated by the software. Since all species are modelled fundamentally through their known natural abundances, the MCA matrix can be manipulated and reprocessed until interpretation of the mass spectrum and, hence, interference correction are optimal. The optimum is attained by use of the bar graph and calculation modes of the PC software and criteria for properly found isotopic patterns. With optimized models stored in the data base, the user may routinely process samples in one go, and operate the ICP-MS system in a true all-element mode. Use of elemental equations or measurement of large multivariate calibration sets and pure component solutions are superfluous. Data reduction is solely based on the information about the isotopic patterns, present in the measured mass spectrum itself. As a result, in the case of interferences, detection limits may be lowered by one to two orders of magnitude. The approach is illustrated with an industrial example of Hf determined in NdFeB, and with an environmental example. Here, a suite of elements over the 50–82 amu mass range has been determined in different salt matrices in ground water.  相似文献   

11.
利用带八极杆碰撞/反应池和屏蔽炬技术的电感耦合等离子体质谱直接测定混凝土中Cr,Mn,Ni,Cu,Zn,As,Cd,Sn,Sb,Pb等多种重金属元素的溶出量。通过向碰撞池中引入氢气和氦气消除多元素分子离子的干扰,以50μg/L的Ge,In,Tb为内标元素校正基体干扰和漂移。10种待测元素的检出限为0.001~0.033μg/L,相对标准偏差为0.85%~2.8%,样品的加标回收率在91.1%~103.9%之间。  相似文献   

12.
A.J. Bednar 《Talanta》2009,78(2):453-247
Recent advances in inductively coupled plasma mass spectrometry (ICP-MS) have included the addition of interference reduction technologies, such as collision and reaction cells, to improve its detection capability for certain elements that suffer from polyatomic interferences. The principle behind reaction cell (RC)-ICP-MS is to remove a particular polyatomic interference by dissociation or formation of a different polyatomic species that no longer interferes with the analyte of interest. However, some interferences cannot be removed by commonly reported reaction gases, such as hydrogen, oxygen, or methane, necessitating using more reactive and hazardous gases, such as ammonia. The current study investigates oxygen as a reaction gas in RC-ICP-MS to specifically react with vanadium analyte ions, rather than the interferents, to produce a polyatomic analyte species and thereby provide a way to analyze for vanadium in complex environmental matrices. The technique has been tested on a series of river water, tap water, and synthetic laboratory samples, and shown to be successful in vanadium analyses in high chloride and sulfate matrices. The zinc isobaric interference on the new vanadium oxide analyte at m/z 67 is also investigated, and can be corrected by using a standard mathematical correction equation. The results of this study further increase the utility of RC-ICP-MS analytical techniques for complex environmental matrices.  相似文献   

13.
Many tasks in bulk analysis, micro analysis and depth profile analysis can be solved advantageously by laser ablation inductively coupled plasma mass spectrometry (Laser ICP-MS) in particular, when both the chemical and elemental distributions in the sample are to be determined. However, the analyst has to take into account that the analytical precision and accuracy of the Laser ICP-MS is influenced decisively by signal standardization, the homogeneity of the samples as well as calibration standards and the mass-spectrometric measuring mode, which is usually sequential when performed with scanning mass spectrometers such as quadrupol- or sector-based instruments. Using the ablated mass as standard, an excellent level of the analytical precision and accuracy (relative standard deviation R.S.D.<0.5%) has been obtained for homogeneous sample materials such as alloys. For inhomogeneous samples, such as pressed pellets, a statistical test is described, which is based upon the auto-correlation function to characterize the sample inhomogeneity. The application of the test allows us to calculate the representative mass for the quantitative analysis at previously defined analytical precision. In the instrumental part of the paper a new type of an ICP—time-of-flight (TOF) mass spectrometer—is described, constructed and built up in our laboratory. For fast signal counting an application-specific integrated circuit (ASIC) was developed, which permits a time resolution of 1 ns. The analytical performance of the TOF when used in combination with an ICP is demonstrated in terms of resolution, ion extraction rate, detection limits and dynamic range. The determination of 39K+ and 40Ca+ at trace level can be realized in a cool plasma condition (high central gas flow) only with a small interference by 40Ar+. Detection limits of 23 elements were measured with typical values in the lower nanograms per liter range. The ion extraction rates, measured for a sample mass of 1 ng in terms of counts per second divided by the relative isotope abundance, are one order of magnitude higher than those obtained with a quadrupol-based instrument.  相似文献   

14.
电感耦合等离子体质谱法(ICP-MS)最新应用进展   总被引:9,自引:0,他引:9  
本文归纳了2008年以来电感耦合等离子体质谱法(ICP-MS)的最新应用进展,并主要阐述了近年来ICP-MS在地质科学、生物与医学、食品安全、农业生产、材料科学、冶金工业、环境分析中的应用。从样品处理,进样技术,内标元素的选择等多方面综述了ICP-MS在不同领域的应用。最后对ICP-MS的发展前景做了展望。  相似文献   

15.
In this study we developed a dried-droplet method for laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The proposed method provides accurate and precise results when building calibration curves and determining elements of interest in real liquid samples. After placing just 1 μL of a liquid standard solution or a real sample onto the filter surface and then converting the solution into a very small, thin dry spot, the sample could be applied as an analytical subject for LA. To demonstrate the feasibility of this proposed method, we used LA-ICP-MS and conventional ICP-MS to determine the levels of 13 elements (Li, V, Mn, Co, Ni, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) in five water samples. The correlation coefficients obtained from the various calibration curves ranged from 0.9920 (205Tl) to 0.9998 (51V), sufficient to allow the determination of a wide range of elements in the samples. We also investigated the effects of Methylene Blue (MB) and the NaCl concentration on the elemental analyses. MB could be used as an indicator during the ablation process; its presence in the samples only negligibly influenced the intensities of the signals of most of the tested elements. Notably, high NaCl contents led to signal suppression for some of the elements. In comparison with the established sample introduction by nebulization, our developed technique abrogates the need for time-consuming sample preparation and reduces the possibility of sample contamination.  相似文献   

16.
The paper is devoted to various significant polyatomic and doubly charged interferences observed for trace elements determined by inductively coupled plasma mass spectrometry in geological samples. It has been shown that most interferences can be minimized or completely excluded using an ELEMENT 2 high-resolution mass spectrometer. The influence of spectral interferences has been quantitatively estimated. Recommendations are given for the selection of isotopes with minimal spectral interferences and an optimal resolution mode. The detection limits for analytes are evaluated for three resolution modes: 300, 4000 and 10000 together with the interferences related to the errors of rare-earth element determination.  相似文献   

17.
Hui-Fang Hsieh 《Talanta》2009,79(2):183-240
This work describes a simple procedure for blood lead level determination. The proposed method requires little sample pretreatment and subsequent direct analysis of a dried blood spot on a filter membrane using laser ablation coupled with inductively coupled plasma mass spectrometry (LA-ICP-MS). In general, LA-ICP-MS studies are somewhat limited by the lack of matrix-matched standards for calibration purposes. Here we describe aqueous standard calibration and matrix-matched calibration methods. This method was validated by analysis of the reference materials. With the matrix-matched calibration method, the recovery ranged from 97.8% to 112.8%, while the aqueous standard calibration method ranged 90.4% to 122.4%. The lower detection limit was estimated as 0.1 ng mL−1. The determination precision, expressed as the relative standard deviation (RSD), was not worse than 10% for all results. A sample throughput of approximately 5 min per sample made it possible to rapidly screen a large number of samples.  相似文献   

18.
实验室比对盲样测定是检验实验室能力验证、实验室资质认定、机构考核的主要手段。为研究并解决测试实验室比对土壤盲样中铍、钒、镍、铜、锌、镉、铅的含量,采用微波消解电感耦合等离子体质谱(ICP-MS)法对土壤盲样进行研究,探讨了不同消解酸体系,检出限和定量限、测试模式和干扰消除、精密度和加标回收率、质控样品进行研究。结果表明:用6 mL HNO3,2 mL HCl和1 mL HF为混合酸体系,各待测元素标准曲线相关系数大于0.9995,检出限在0.001~2.985 mg.L-1,定量限在0.003~9.94 mg.L-1,采用氦气碰撞模式测试钒、镍、铜、锌、镉和铅,可以有效的降低多原子离子的干扰;采用no gas模式测试铍,可以有效的提高铍的测试灵敏度。方法精密度为0.2%~6.2%(n=6),加标回收率为92.3%~110.6%,采用土壤标准样品(GSS-4)进行全过程质控研究分析,各元素结果均在标准值参考范围内。用ICP-OES法测试土壤盲样中七种待测金属元素含量与用铑为内标的ICP-MS进行比对,测量分析结果基本一致。  相似文献   

19.
Because multielement trace analysis by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) is often limited by the lack of suitable reference materials with a similar matrix composition, a novel quantification strategy using solution calibration was developed. For mass spectrometric multielement determination in geological samples a quadrupole-based LA-ICP-MS is coupled with an ultrasonic nebulizer (USN). In order to arrange matrix matching the standard solutions are nebulized with a USN during solution calibration and simultaneously a blank target (e.g. lithium borate) is ablated with a focused laser beam. The homogeneous geological samples were measured using the same experimental arrangement where a 2% nitric acid is simultaneously nebulized with the USN. Homogeneous targets were prepared from inhomogeneous geological samples by powdering, homogenizing and fusing with a lithium borate mixture in a muffle furnace at 1050 degrees C. Furthermore, a homogeneous geological glass was also investigated. The quantification of analytical results was performed by external calibration using calibration curves measured on standard solutions. In order to compare two different approaches for the quantification of analytical results in LA-ICP-MS, measured concentrations in homogeneous geological targets were also corrected with relative sensitivity coefficients (RSCs) determined using one standard solution only. The analytical results of LA-ICP-MS on various geological samples are in good agreement with the reference values and the results of other trace analytical methods. The relative standard deviation (RSD) for trace element determination (N = 6) is between 2 and 10%.  相似文献   

20.
The quantitative determination of trace elements in nuclear samples by GDMS and ICP-MS is presented and compared. Spectral interferences, matrix effects, detection limits, precision and accuracy are discussed. Results for selected samples demonstrated that both techniques are complementary. The use of a multi-standard solution provides the most accurate results in ICP-MS, whereas in GDMS this is achieved by relative sensitivity factors (RSF) matrix matched. Nevertheless, the use of standard RSF allows a fast screening.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号