首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Reaction of RuHCl(PPh(3))(2)(diamine) (1a, diamine = (R,R)-1,2-diaminocyclohexane, (R,R)-dach; 1b, diamine = ethylenediamine, en) with KO(t)Bu in benzene quickly generates solutions of the amido-amine complexes RuH(PPh(3))(2)(NHC(6)H(10)NH(2)), (2a'), and RuH(PPh(3))(2)(NHCH(2)CH(2)NH(2)), (2b'), respectively. These solutions react with dihydrogen to first produce the trans-dihydrides (OC-6-22)-Ru(H)(2)(PPh(3))(2)(diamine) (t,c-3a, t,c-3b). Cold solutions (-20 degrees C) containing trans-dihydride t,c-3a react with acetophenone under Ar to give (S)-1-phenylethanol (63% ee). Complexes t,c-3 have lifetimes of less than 10 min at 20 degrees and then isomerize to the cis-dihydride, cis-bisphosphine isomers (OC-6-32)-Ru(H)(2)(PPh(3))(2)(diamine) (Delta/Lambda-c,c-3a, c,c-3b). A solution containing mainly Delta/Lambda-c,c-3a reacts with acetophenone under Ar to give (S)-1-phenylethanol in 20% ee, whereas it is an active precatalyst for its hydrogenation under 5 atm H(2) to give 1-phenylethanol with an ee of 50-60%. Complexes c,c-3 isomerize to the cis-dihydride, trans-bisphosphine complexes (OC-6-13)-Ru(H)(2)(PPh(3))(2)(diamine) (c,t-3a, c,t-3b) with half-lives of 40 min and 1 h, respectively. A mixture of Delta/Lambda-c,c-3a and c,t-3a can also be obtained by reaction of 1a with KBH(Bu(sec))(3). A solution of complex c,t-3a in benzene under Ar reacts very slowly with acetophenone. These results indicate that the trans-dihydrides t,c-3a or t,c-3b along with the corresponding amido-amine complexes 2a' or 2b' are the active hydrogenation catalysts in benzene, while the cis-dihydrides c,c-3a or c,c-3b serve as precatalysts. The complexes RuCl(2)(PPh(3))(2)((R,R)-dach) or 1a, when activated by KO(t)Bu, are also sources of the active catalysts. A study of the kinetics of the hydrogenation of acetophenone in benzene catalyzed by 3a indicates a rate law: rate = k[c,c-3a](initial)[H(2)] with k = 7.5 M(-1) s(-1). The turnover-limiting step appears to be the reaction of 2a' with dihydrogen as it is for RuH(NHCMe(2)CMe(2)NH(2))(PPh(3))(2) (2c'). The catalysts are more active in 2-propanol, even without added base, and the kinetic behavior is complicated. The basic cis-dihydride c,t-3a reacts with [NEt(3)H]BPh(4) to produce the dihydrogen complex (OC-14)-[Ru(eta(2)-H(2))(H)(PPh(3))(2)((R,R)-dach)]BPh(4) (4) and with diphenylphosphinic acid to give the complex RuH(O(2)PPh(2))(PPh(3))(2)((R,R)-dach) (5). The structure of 5 models aspects of the transition state structure for the ketone hydrogenation step. Complex 2b' decomposes rapidly under Ar to give dihydrides 3b along with a dinuclear complex (PPh(3))(2)HRu(mu-eta(2);eta(4)-NHCHCHNH)RuH(PPh(3))(2) (6) containing a rare, bridging 1,4-diazabutadiene group. The formation of an imine by beta-hydride elimination from the amido-amine ligand of 2a' under Ar might explain some loss of enantioselectivity of the catalyst. The structures of complexes 1a, 5, and 6 have been determined by single-crystal X-ray diffraction.  相似文献   

2.
The iridium complex [Ir(mu-Cl)(PN)(PPh3)]2 (1) reacts with H2 affording only the kinetic isomer OC-6-55-C of the dihydride [IrClH2(PN)(PPh3)] (2) and with methanol yielding, also exclusively, the thermodynamic isomer OC-6-53-C (2b) of the same dihydride; complex 2b has been characterised by X-ray diffractometric methods.  相似文献   

3.
The use of the phosphine PPh2py instead of PPh3 in complexes of the type [Cp*RuH(P)2] enormously alters the kinetic control of the proton-transfer reactions over this compound and its chemical behavior. The reaction at low temperature of [Cp*RuH(PPh2py)2], 2, with HBF4 gives as products the classical dihydride trans-[Cp*RuH2(PPh2py)2](BF4), 3 (1 equiv of HBF4) or the dihydrogen-bonded complex [Cp*RuHH(PPh2pyH)(PPh2py)](BF4)2, 4 (2 equiv of HBF4). These complexes exhibit very accessible intramolecular processes of proton transfer, and finally, a slow release of H2 takes place at room temperature. Derivatives 2 and 3 are active catalysts for the deuterium labeling of H2 using methanol-d4 as an isotopic source. This demonstrates that the release of hydrogen is reversible, that the heterolytic activation of H2 is an easy process, and that acid species participate in the intramolecular proton-transfer processes. These observations are supported by reaction-coordinate calculations at the DFT/B3LYP level that show the existence of a low-energy reaction path that easily transforms the classical trans dihydride complex into the nonclassical cis dihydrogen compound in a reversible way, through the involvement of hydrogen- and dihydrogen-bonded intermediates and the essential participation of the pyridine centers. The different energy minima of this reaction profile are very accessible through low-energy transition states, all of which have been located.  相似文献   

4.
The complexes trans-RuH(Cl)(tmen)(R-binap) (1) and (OC-6-43)-RuH(Cl)(tmen)(PPh(3))(2) (2) are prepared by the reaction of the diamine NH(2)CMe(2)CMe(2)NH(2) (tmen) with RuH(Cl)(PPh(3))(R-binap) and RuH(Cl)(PPh(3))(3), respectively. Reaction of KHB(sec)Bu(3) with 1 yields trans-Ru(H)(2)(R-binap)(tmen) (5) while reaction of KHB(sec)Bu(3) or KO(t)Bu with 2 under Ar yields the new hydridoamido complex RuH(PPh(3))(2)(NH(2)CMe(2)CMe(2)NH) (4). Complex 4 has a distorted trigonal bipyramidal geometry with the amido nitrogen in the equatorial plane. Loss of H(2) from 5 results in the related complex RuH(R-binap)(NH(2)CMe(2)CMe(2)NH) (3). Reaction of H(2) with 4 yields the trans-dihydride (OC-6-22)-Ru(H)(2)(PPh(3))(2)(tmen)(6). Calculations support the assignment of the structures. The hydrogenation of acetophenone is catalyzed by 5 or 4 in benzene or 2-propanol without the need for added base. For 5 in benzene at 293 K over the ranges of concentrations [5] = 10(-)(4) to 10(-)(3) M, [ketone] = 0.1 to 0.5 M, and of pressures of H(2) = 8 to 23 atm, the rate law is rate = k[5][H(2)] with k = 3.3 M(-1) s(1), DeltaH++ = 8.5 +/- 0.5 kcal mol(-1), DeltaS++ = -28 +/- 2 cal mol(-1) K(-1). For 4 in benzene at 293 K over the ranges of concentrations [4] = 10(-4) to 10(-3) M, [ketone] 0.1 to 0.7 M, and of pressures of H(2) = 1 to 6 atm, the preliminary rate law is rate = k[4][H(2)] with k = 1.1 x 10(2) M(-1) s(-1), DeltaH++ = 7.6 +/- 0.3 kcal mol(-1), DeltaS++ = -23 +/- 1 cal mol(-1) K(-1). Both theory and experiment suggest that the intramolecular heterolytic splitting of dihydrogen across the polar Ru=N bond of the amido complexes 3 and 4 is the turn-over limiting step. A transition state structure and reaction energy profile is calculated. The transfer of H(delta+)/H(delta-) to the ketone from the RuH and NH groups of 5 in a Noyori metal-ligand bifunctional mechanism is a fast process and it sets the chirality as (R)-1-phenylethanol (62-68% ee) in the hydrogenation of acetophenone. The rate of hydrogenation of acetophenone catalyzed by 5 is slower and the ee of the product is low (14% S) when 2-propanol is used as the solvent, but both the rate and ee (up to 55% R) increase when excess KO(t)Bu is added. The formation of ruthenium alkoxide complexes in 2-propanol might explain these observations. Alkoxide complexes [RuP(2)]H(OR)(tmen), [RuP(2)] = Ru(R-binap) or Ru(PPh(3))(2), R= (i) Pr, CHPhMe, (t)Bu, are observed by reacting the alcohols (i)PrOH, phenylethanol, and (t)BuOH with the dihydrides 5 and 6, respectively, under Ar. In the absence of H(2), the amido complexes 3 and 4 react with acetophenone to give the ketone adducts [RuP(2)]H(O=CPhMe)(NH(2)CMe(2)CMe(2)NH) in equilibrium with the enolate complexes trans- [RuP(2)](H)(OCPh=CH(2))(tmen) and eventually the decomposition products [RuP(2)]H(eta(5)-CH(2)CPhCHCPhO), with the binap complex characterized crystallographically. In general, proton transfer from the weakly acidic molecules dihydrogen, alcohol, or acetophenone to the amido nitrogen of complexes 3 and 4 is favored in two ways when the molecule coordinates to ruthenium: (1) an increase in acidity of the molecule by the Lewis acidic metal and (2) an increase in the basicity of the amido nitrogen caused by its pyramidalization. The formato complexes trans-[RuP(2)]H(OCHO)(tmen) were prepared by reacting the respective complex 4 or 5 with formic acid. The crystal structure of RuH(OCHO)(PPh(3))(2)(tmen) displays similar features to the calculated transition state for H(delta+)/H(delta-) transfer to the ketone in the catalytic cycle.  相似文献   

5.
The complexes Ru(CO)2L2(AL-2H) (AL = alizarin; L = PPh3, PCyc3, PBu3, P(m-NaSO3C6H4)3), Ru(CO)(dppe)(PBu3)(AL-2H), and RuH(CO)L2(AL-H) (L = PPh3, PCyc3), and Ru(CO)2L2(AR-2H) (AR = anthrarobin; L = PBu3) were prepared by reactions of Ru3(CO)12, L, and AL, and the complexes RuH(CO)(PPh3)2(AL-H), RuH(CO)(PPh3)2(QN-H) (QN = quinizarin), and RuH(CO)(PPh3)2(LQN-H) (LQN = leucoquinizarin) are prepared by reactions of RuH2(CO)(PPh3)3 with AL or QN. The AL-2H and AR-2H ligands act as 1,2-catecholates, whereas the AL-H, QN-H, LQN-H ligands are 1,9-o-acylphenolate ligands. RuH(CO)(PPh3)2(AL-H) is characterized by X-ray crystallography. The electrochemistry of these complexes is examined, and the semiquinone complexes [Ru(CO)2L2(AL-2H)]+ (L = PPh3, PCyc3, PBu3) and [Ru(CO)(dppe)(PBu3)(AL-2H)]+ are generated by chemical oxidation and were characterized by EPR and IR spectroscopy. The photophysical properties are also reported.  相似文献   

6.
Eum MS  Chin CS  Kim SY  Kim C  Kang SK  Hur NH  Seo JH  Kim GY  Kim YK 《Inorganic chemistry》2008,47(14):6289-6295
Newly prepared hydrido iridium(III) complexes [Ir(ppy)(PPh3)2(H)L](0,+) (ppy = bidentate 2-phenylpyridinato anionic ligand; L = MeCN (1b), CO (1c), CN(-) (1d); H being trans to the nitrogen of ppy ligand) emit blue light at the emission lambda(max) (452-457, 483-487 nm) significantly shorter than those (468, 495 nm) of the chloro complex Ir(ppy)(PPh3)2(H)(Cl) (1a). Replacing ppy of 1a-d with F2ppy (2,4-difluoro-2-phenylpyridinato anion) and F2Meppy (2,4-difluoro-2-phenyl-m-methylpyridinato anion) brings further blue-shifts down to the emission lambda(max) at 439-441 and 465-467 nm with CIE color coordinates being x = 0.16 and y = 0.18-0.20 to display a deep-blue photoemission. No significant blue shift is observed by replacing PPh3 of 1a with PPh2Me to produce Ir(ppy)(PPh2Me)2(H)(Cl) (1aPPh 2Me), which displays emission lambda max at 467 and 494 nm. The chloro complexes, [Ir(ppy)(PPh3)2(Cl)(L)](0,+) (L = MeCN (2b), CO (2c), CN(-) (2d)) having a chlorine ligand trans to the nitrogen of ppy also emit deep-blue light at emission lambda(max) 452-457 and 482-487 nm.  相似文献   

7.
Compounds of the form Ru(X2bipy)(PPh3)2(-C triple bond CC6H4NO2-p)2(X2bipy = 4,4'-X(2)-2,2'-bipyridine, X = Me 3a, Br 3b, I 3c) have been synthesised from the mono-alkynyl precursors Ru(X2bipy)(PPh3)2(-C triple bond CC6H4NO2-p)Cl (X = Me 2a, Br 2b, I 2c); the former are the first ruthenium bis-alkynyl compounds that also contain a bipyridyl ligand. Spectroelectrochemical investigation of 3a shows that the metal is readily oxidised to form the ruthenium(III) compound 3a+, and will also undergo a single-electron reduction at each nitro group to form 3a2-. ESR and UV/visible spectra of these redox congeners are presented. We also report the synthesis of [Ru(Me2bipy)(PPh3)2(-C triple bond CBut)(N triple bond N)][PF6] during the attempted synthesis of Ru(Me2bipy)(PPh3)2(-C triple bond CBut)2, and report its X-ray crystal structure and IR spectrum. X-Ray crystal structures of 3b and 3c(as two different solvates) are presented, and the nature of the intermolecular interactions seen therein is discussed. Z-Scan measurements on Ru(Me2bipy)(PPh3)2(-C triple bond CR)Cl (R = C6H4NO2-p2a, But, Ph, C6H4Me) are also reported, and show that Ru(Me2bipy)(PPh3)2(-C triple bond CR)Cl (R = C6H4NO2-p2a, Ph) exhibit moderate third-order non-linearities.  相似文献   

8.
The complexes [(C5R5)RuH(dippae)] [R = H (1a), Me (2a); dippae = 1,2-bis(diisopropylphosphinoamino)ethane] and [(C5R5)RuH((R,R)-dippach)] [R = H (1b), Me (2b); (R,R)-dippach = (R,R)-1,2-bis(diisopropylphosphinoamino)cyclohexane] have been prepared and characterized. The cationic ruthenium(IV) dihydride derivatives [(C5R5)RuH2(dippae)][BPh4] [R = H (3a), Me (4a)] and [(C5R5)RuH2((R,R)-dippach)][BPh4] [R = H (3b), Me (4b)] are also reported. No significant intramolecular interaction between the amino protons and the hydrogen atoms bound to the metal has been observed in any of these compounds. The X-ray crystal structure of 4a was determined. The proton-transfer processes over the monohydrides 2a and 2b with HBF4.OEt2 have been studied by NMR spectroscopy. Dicationic dihydride complexes [CpRuH2(LH)]2+ [LH = dippaeH+ (5a), (R,R)-dippachH+ (5b)] and [Cp*RuH2(LH)]2+ [LH = dippaeH+ (6a), (R,R)-dippachH+ (6b)] result respectively from the protonation of either the monohydrides 1a,b or 2a,b or the dihydrides 3a,b or 4a,b at one of the NH groups of the phosphinoamine ligands by an excess of HBF4. These dicationic derivatives exhibit fluxional behavior in solution. In the course of the protonation of 1a with HBF4.OEt2, a cationic dihydrogen complex and a dihydrogen-bonded derivative have been identified as intermediates by NMR spectroscopy. Another dihydrogen species, namely, [CpRu(H...HOOCPh)((R,R)-dippach)], was also identified in the course of the reaction of 1b with benzoic acid in toluene-d8. The reaction of 1a with 0.5 equiv of 1,1,1,3,3,3-hexafluoroisopropanol generates a hydride species having a very short (T1)min of 6.5 ms at 400 MHz, an experimental fact for which no satisfactory explanation has yet been found.  相似文献   

9.
The synthesis, characterisation and thermal and photochemical reactivity of Ru(CO)2(PPh3)(dppe) 1 towards hydrogen are described. Compound proved to exist in both fac (major) and mer forms in solution. Under thermal conditions, PPh3 is lost from 1 in the major reaction pathway and the known complex Ru(CO)2(dppe)(H)2 2 is formed. Photochemically, CO loss is the dominant process, leading to the alternative dihydride Ru(CO)(PPh3)(dppe)(H)2 3. The major isomer of 3, viz. 3a, contains hydride ligands that are trans to CO and trans to one of the phosphorus atoms of the dppe ligand but a second isomer, 3b, where both hydride ligands are trans to distinct phosphines, is also formed. On the NMR timescale, no interconversion of 3a and 3b was observed, although hydride site interchange is evident with activation parameters of DeltaH(double dagger) = 95 +/- 6 kJ mol(-1) and DeltaS(double dagger) = 26 +/- 17 J K(-1) mol(-1). Density functional theory confirms that the observed species are the most stable isomeric forms, and suggests that hydride exchange occurs via a transition state featuring an eta2-coordinated H2 unit.  相似文献   

10.
The red, five-coordinate complexes Ru(CO)Cl(PPh(3))2(CH=CHPh) and [Ru(CO)Cl(PPh(3))2]2(mu-CH=CHC(6)H(4)CH=CH) undergo reversible coordination of PPh(3) at low temperature to produce the pale yellow, six-coordinate complexes Ru(CO)Cl(PPh(3))3(CH=CHPh) and [Ru(CO)Cl(PPh(3))3]2(mu-CH=CHC(6)H(4)CH=CH). X-ray crystal structures of the latter complex and of the hydride complex RuH(CO)Cl(PPh(3))3 were obtained. 1H and 31P NMR spectra between 20 and -70 degrees C exhibit large changes in both equilibrium constants and dynamic effects. Thermodynamic parameters, DeltaH = -17.5 +/- 2.0 kcal/mol and DeltaS = -57.5 +/- 7.6 eu, were obtained for PPh(3) coordination to the monoruthenium complex, and activation parameters, DeltaH = 20.6 +/- 0.7 kcal/mol and DeltaS = 41.6 +/- 2.0 eu, were obtained for the reverse decoordination. Coordination of PPh(3) was not observed upon cooling of the shorter bridged complex, [Ru(CO)Cl(PPh(3))2]2(mu-CH=CHCH=CH).  相似文献   

11.
The complexation of di-(2-pyridylmethyl)amine to RuHCl(PPh(3))(3) affords the salt [RuH{κ(3)N-fac-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2)]Cl. Reaction with potassium tert-butoxide at room temperature yields the unusual ruthenaziridine complex RuH{κ(3)C(alk)NN(py)-1,3-di-(2-pyridylmethyl)amine}(PPh(3))(2), where the central nitrogen atom, adjacent alkyl carbon, and pyridine arm coordinate to the metal, leaving the second pyridine arm uncoordinated. Surprisingly, heating of this ruthenaziridine complex with concomitant H(2) formation affords the ruthenium azaallyl complex RuH(κ(3)N-1,3-di-(2-pyridyl)-2-azaallyl)(PPh(3))(2). This is a rare example of a 4d metal complex containing the azaallyl ligand. X-Ray crystal structures and NMR characterization of all three compounds are presented herein.  相似文献   

12.
Triazenide [M(eta2-1,3-ArNNNAr)P4]BPh4 [M = Ru, Os; Ar = Ph, p-tolyl; P = P(OMe)3, P(OEt)3, PPh(OEt)2] complexes were prepared by allowing triflate [M(kappa2-OTf)P4]OTf species to react first with 1,3-ArN=NN(H)Ar triazene and then with an excess of triethylamine. Alternatively, ruthenium triazenide [Ru(eta2-1,3-ArNNNAr)P4]BPh4 derivatives were obtained by reacting hydride [RuH(eta2-H2)P4]+ and RuH(kappa1-OTf)P4 compounds with 1,3-diaryltriazene. The complexes were characterized by spectroscopy and X-ray crystallography of the [Ru(eta2-1,3-PhNNNPh){P(OEt)3}4]BPh4 derivative. Hydride triazene [OsH(eta1-1,3-ArN=NN(H)Ar)P4]BPh4 [P = P(OEt)3, PPh(OEt)2; Ar = Ph, p-tolyl] and [RuH{eta1-1,3-p-tolyl-N=NN(H)-p-tolyl}{PPh(OEt)2}4]BPh4 derivatives were prepared by allowing kappa1-triflate MH(kappa1-OTf)P4 to react with 1,3-diaryltriazene. The [Os(kappa1-OTf){eta1-1,3-PhN=NN(H)Ph}{P(OEt)3}4]BPh4 intermediate was also obtained. Variable-temperature NMR studies were carried out using 15N-labeled triazene complexes prepared from the 1,3-Ph15N=N15N(H)Ph ligand. Osmium dihydrogen [OsH(eta2-H2)P4]BPh4 complexes [P = P(OEt)3, PPh(OEt)2] react with 1,3-ArN=NN(H)Ar triazene to give the hydride-diazene [OsH(ArN=NH)P4]BPh4 derivatives. The X-ray crystal structure determination of the [OsH(PhN=NH){PPh(OEt)2}4]BPh4 complex is reported. A reaction path to explain the formation of the diazene complexes is also reported.  相似文献   

13.
The self-assembly of complex cationic structures by combination of cis-blocked square planar palladium(II) or platinum(II) units with bis(pyridyl) ligands having bridging amide units has been investigated. The reactions have yielded dimers, molecular triangles, and polymers depending primarily on the geometry of the bis(pyridyl) ligand. In many cases, the molecular units are further organized in the solid state through hydrogen bonding between amide units or between amide units and anions. The molecular triangle [Pt(3)(bu(2)bipy)(3)(mu-1)(3)](6+), M = Pd or Pt, bu(2)bipy = 4,4'-di-tert-butyl-2,2'-bipyridine, and 1 = N-(4-pyridinyl)isonicotinamide, stacks to give dimers by intertriangle NH.OC hydrogen bonding. The binuclear ring complexes [[Pd(LL)(mu-2)](2)](CF(3)SO(3))(4), LL = dppm = Ph(2)PCH(2)PPh(2) or dppp = Ph(2)P(CH(2))(3)PPh(2) and 2 = NC(5)H(4)-3-CH(2)NHCOCONHCH(2)-3-C(5)H(4)N, form transannular hydrogen bonds between the bridging ligands. The complexes [[Pd(LL)(mu-3)](2)](CF(3)SO(3))(4), LL = dppm or dppp, L = PPh(3), and 3 = N,N'-bis(pyridin-3-yl)-pyridine-2,6-dicarboxamide, and [[Pd(LL)(mu-4)](2)](CF(3)SO(3))(4), LL = dppm, dppp, or bu(2)bipy, L = PPh(3), and 4 = N,N'-bis(pyridin-4-yl)-pyridine-2,6-dicarboxamide, are suggested to exist as U-shaped or square dimers, respectively. The ligands N,N'-bis(pyridin-3-yl)isophthalamide, 5, or N,N'-bis(pyridin-4-yl)isophthalamide, 6, give the complexes [[Pd(LL)(mu-5)](2)](CF(3)SO(3))(4) or [[Pd(LL)(mu-6)](2)](CF(3)SO(3))(4), but when LL = dppm or dppp, the zigzag polymers [[Pd(LL)(mu-6)](x)](CF(3)SO(3))(2)(x) are formed. When LL = dppp, a structure determination shows formation of a laminated sheet structure by hydrogen bonding between amide NH groups and triflate anions of the type NH-OSO-HN.  相似文献   

14.
A series of sulfido-bridged tungsten-ruthenium dinuclear complexes Cp*W(mu-S)(3)RuX(PPh(3))(2) (4a; X = Cl, 4b; X = H), Cp*W(O)(mu-S)(2)RuX(PPh(3))(2) (5a; X = Cl, 5b; X = H), and Cp*W(NPh)(mu-S)(2)RuX(PPh(3))(2) (6a; X = Cl, 6b; X = H) have been synthesized by the reactions of (PPh(4))[Cp*W(S)(3)] (1), (PPh(4))[Cp*W(O)(S)(2)] (2), and (PPh(4))[Cp*W(NPh)(S)(2)] (3), with RuClX(PPh(3))(3) (X = Cl, H). The heterolytic cleavage of H(2) was found to proceed at room temperature upon treating 5a and 6a with NaBAr(F)(4) (Ar(F) = 3, 5-C(6)H(3)(CF(3))(2)) under atmospheric pressure of H(2), which gave rise to [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (7a) and [Cp*W(NHPh)(mu-S)(2)RuH(PPh(3))(2)](BAr(F)(4)) (8), respectively. When Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b) was treated with a Br?nstead acid, [H(OEt(2))(2)](BAr(F)(4)) or HOTf, protonation occurred exclusively at the terminal oxide to give [Cp*W(OH)(mu-S)(2)RuH(PPh(3))(2)](X) (7a; X = BAr(F)(4), 7b; X = OTf), while the hydride remained intact. The analogous reaction of Cp+W(mu-S)(3)Ru(PPh(3))(2)H (4b) led to immediate evolution of H(2). Selective deprotonation of the hydroxyl group of 7a or 7b was induced by NEt(3) and 4b, generating Cp*W(O)(mu-S)(2)Ru(PPh(3))(2)H (5b). Evolution of H(2) was also observed for the reactions of 7a or 7b with CH(3)CN to give [Cp*W(O)(mu-S)(2)Ru(CH(3)CN)(PPh(3))(2)](X) (11a; X = BAr(F)(4), 11b; X = OTf). We examined the H/D exchange reactions of 4b, 5b, and 7a with D(2) and CH(3)OD, and found that facile H/D scrambling over the W-OH and Ru-H sites occurred for 7a. Based on these experimental results, the mechanism of the heterolytic H(2) activation and the reverse H(2) evolution reactions are discussed.  相似文献   

15.
The reactions of [Ag(NH=CMe2)2]ClO4 with cis-[PtCl2L2] in a 1:1 molar ratio give cis-[PtCl(NH=CMe2)(PPh3)2]ClO4 (1cis) or cis-[PtCl(NH=CMe2)2(dmso)]ClO4 (2), and in 2:1 molar ratio, they produce [Pt(NH=CMe2)2L2](ClO4)2 [L = PPh3 (3), L2= tbbpy = 4,4'-di-tert-butyl-2,2'-dipyridyl (4)]. Complex 2 reacts with PPh3 (1:2) to give trans-[PtCl(NH=CMe2)(PPh3)2]ClO(4) (1trans). The two-step reaction of cis-[PtCl2(dmso)2], [Au(NH=CMe2)(PPh3)]ClO4, and PPh3 (1:1:1) gives [SP-4-3]-[PtCl(NH=CMe2)(dmso)(PPh3)]ClO4 (5). The reactions of complexes 2 and 4 with PhICl2 give the Pt(IV) derivatives [OC-6-13]-[PtCl3(NH=CMe2)(2)(dmso)]ClO4 (6) and [OC-6-13]-[PtCl2(NH=CMe2)2(dtbbpy)](ClO4)2 (7), respectively. Complexes 1cis and 1trans react with NaH and [AuCl(PPh3)] (1:10:1.2) to give cis- and trans-[PtCl{mu-N(AuPPh3)=CMe2}(PPh3)2]ClO4 (8cis and 8trans), respectively. The crystal structures of 4.0.5Et2O.0.5Me2CO and 6 have been determined; both exhibit pseudosymmetry.  相似文献   

16.
The complexes RuHCl((R)-binap)(L-NH2) with L-NH2 = (S)-histidine-Me-ester (1), histamine (3), (S)-histidinol (4) or 1-Me-(S)-histidine-Me-ester (5), and RuHCl((S)-binap)(L-NH(2)) with L-NH2 = (S)-histidine-Me-ester (2) have been prepared in 60-81% overall yields in a one-pot, three-step procedure from the precursor RuCl2(PPh3)3. Their octahedral structures with hydride trans to chloride were deduced from their NMR spectra and confirmed by the results of a single crystal X-ray diffraction study for complex 3. Under H2 and in the presence of KOtBu, complexes 1-5 in 2-propanol form moderately active catalyst precursors for the asymmetric hydrogenation of acetophenone to 1-phenylethanol. Complex 5 is more active and enantioselective than complexes 1-4, allowing complete conversion to 1-phenylethanol in 46% e.e. (R) in 72 h at 20 degrees C under 1 MPa of H2 with substrate : catalyst : base = 2000 : 1 : 30. Complex 5, when activated, also catalyzes the hydrogenation of trans-4-phenyl-3-buten-2-one to exclusively the allyl alcohol 4-phenyl-3-buten-2-ol under 2.7 MPa of H2 at 50 degrees C in 2-propanol. This selectivity for C=O versus C=C hydrogenation is consistent with a mechanism involving the outer sphere transfer of hydride and proton to the polar bond. Further extensions to complexes with peptides with N-terminal histidine groups appear feasible on the basis of the current work.  相似文献   

17.
The bis(dihydrogen) complex RuH(2)(H(2))(2)(PCy(3))(2) (1) reacts with 2-phenyl-3,4-dimethylphosphaferrocene (L(1)) to give RuH(2)(H(2))(PCy(3))(2)(L(1)) (2). This dihydride-dihydrogen complex has been characterized by X-ray crystallography and variable-temperature (1)H and (31)P NMR spectroscopy. The exchange between the dihydrogen ligand and the two hydrides is characterized by a DeltaG() of 46.2 kJ/mol at 263 K. H/D exchange is readily observed when heating a C(7)D(8) solution of 2 (J(H-D) = 30 Hz). The H(2) ligand in 2 can be displaced by ethylene or carbon monoxide leading to the corresponding ethylene or carbonyl complexes. The reaction of 1 with 2 equiv of 3,4-dimethylphosphaferrocene (L(2)) yields the dihydride complex RuH(2)(PCy(3))(2)(L(2))(2) (5).  相似文献   

18.
Reaction of [RhCl(PPh3)2]2 with parahydrogen revealed that the binuclear dihydride [Rh(H)2(PPh3)2mu-Cl)2Rh(PPh3)2] and the tetrahydride complex [Rh(H)2(PPh3)2(mu-Cl)]2 are readily formed. While magnetisation transfer from free H2 into both the hydride resonances of the tetrahydride and [Rh(H)2Cl(PPh3)3] is observable, neither transfer into [Rh(H)2(PPh3)2(mu-Cl)2Rh(PPh3)2] nor transfer between the two binuclear complexes is seen. Consequently [Rh(H)2(PPh3)2(mu-Cl)]2 and [Rh(H)2(PPh3)2(mu-Cl)2Rh(PPh3)2] are not connected on the NMR timescale by simple elimination or addition of H2. The rapid exchange of free H2 into the tetrahydride proceeds via reversible halide bridge rupture and the formation of [Rh(H)2(PPh3)2(mu-Cl)RhCl(H)2(PPh3)2]. When these reactions are examined in CD2Cl2, the formation of the solvent complex [Rh(H)2(PPh3)2(mu-Cl)2Rh(CD2Cl2)(PPh3)] and the deactivation products [Rh(Cl)(H)PPh3)2(mu-Cl)(mu-H)Rh(Cl)(H)PPh3)2] and [Rh(Cl)(H)(CD2Cl2)(PPh3)(mu-Cl)(mu-H)Rh(Cl)(H)PPh3)2] is indicated. In the presence of an alkene and parahydrogen, signals corresponding to binuclear complexes of the type [Rh(H)2(PPh3)2(mu-Cl)(2)(Rh)(PPh3)(alkene)] are detected. These complexes undergo intramolecular hydride interchange in a process that is independent of the concentration of styrene and catalyst and involves halide bridge rupture, followed by rotation about the remaining Rh-Cl bridge, and bridge re-establishment. This process is facilitated by electron rich alkenes. Magnetisation transfer from the hydride ligands of these complexes into the alkyl group of the hydrogenation product is also observed. Hydrogenation is proposed to proceed via binuclear complex fragmentation and trapping of the resultant intermediate [RhCl(H)2PPh3)2] by the alkene. Studies on a number of other binuclear dihydride complexes including [(H)(Cl)Rh(PMe3)2(mu-H)(mu-Cl)Rh(CO)(PMe3)], [(H)2Rh(PMe3)2(mu-Cl)2Rh(CO)(PMe3)] and [HRh(PMe3)2(mu-H)(mu-Cl)2Rh(CO)(PMe3)] reveal that such species are able to play a similar role in hydrogenation catalysis. When the analogous iodide complexes [RhIPPh3)2]2 and [RhI(PPh3)3] are examined, [Rh(H)2(PPh3)2(mu-I)2Rh(PPh3)2], [Rh(H)2(PPh3)2(mu-I)]2 and [Rh(H)2I(PPh3)3] are observed in addition to the corresponding binuclear alkene-dihydride products. The higher initial activity of these precursors is offset by the formation of the trirhodium phosphide bridged deactivation product, [[(H)(PPh3)Rh(mu-H)(mu-I)(mu-PPh2)Rh(H)(PPh3)](mu-I)2Rh(H)2PPh3)2]  相似文献   

19.
The reaction of Pd(OAc)2 with bis-iminophosphoranes Ph3P=NCH2CH2CH2N=PPh3 (1a), [C6H4(C(O)N=PPh3)2-1,3] (1b) and [C6H4(C(O)N=PPh3)2-1,2] (1c), gives the orthopalladated tetranuclear complexes [{Pd(mu-Cl){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2]2 (2a) [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3']2 (2b) and [{Pd(mu-OAc){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2']2 (2c). The reaction takes place in CH2Cl2 for 1a, but must be performed in glacial acetic acid for 1b and 1c. The process implies in all cases the activation of a C-H bond on a Ph ring of the phosphonium group, with concomitant formation of endo complexes. This is the expected behaviour for 1a, but for 1b and 1c reverses the exo orientation observed in other ketostabilized iminophosphoranes. The influence of the solvent in the orientation of the reaction is discussed. The dinuclear acetylacetonate complexes [{Pd(acac-O,O'){C6H4(PPh2=NCH2-kappa-C,N)-2}}2CH2] (3a), [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',3'] (3b) and [{Pd(acac-O,O'){C6H4(PPh2=NC(O)-kappa-C,N)-2}}2C6H4-1',2'] (3c) have been obtained from the halide-bridging tetranuclear derivatives. The X-ray crystal structure of [3c.4CHCl3] is also reported.  相似文献   

20.
The new cyano complexes of formulas PPh(4)[Fe(III)(bipy)(CN)(4)] x H(2)O (1), [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] x 4H(2)O with M = Mn (2) and Zn (3), and [[Fe(III)(bipy)(CN)(4)](2)Zn(II)] x 2H(2)O (4) [bipy = 2,2'-bipyridine and PPh(4) = tetraphenylphosphonium cation] have been synthesized and structurally characterized. The structure of complex 1 is made up of mononuclear [Fe(bipy)(CN)(4)](-) anions, tetraphenyphosphonium cations, and water molecules of crystallization. The iron(III) is hexacoordinated with two nitrogen atoms of a chelating bipy and four carbon atoms of four terminal cyanide groups, building a distorted octahedron around the metal atom. The structure of complexes 2 and 3 consists of neutral centrosymmetric [[Fe(III)(bipy)(CN)(4)](2)M(II)(H(2)O)(4)] heterotrinuclear units and crystallization water molecules. The [Fe(bipy)(CN)(4)](-) entity of 1 is present in 2 and 3 acting as a monodentate ligand toward M(H(2)O)(4) units [M = Mn(II) (2) and Zn(II) (3)] through one cyanide group, the other three cyanides remaining terminal. Four water molecules and two cyanide nitrogen atoms from two [Fe(bipy)(CN)(4)](-) units in trans positions build a distorted octahedron surrounding Mn(II) (2) and Zn(II) (3). The structure of the [Fe(phen)(CN)(4)](-) complex ligand in 2 and 3 is close to that of the one in 1. The intramolecular Fe-M distances are 5.126(1) and 5.018(1) A in 2 and 3, respectively. 4 exhibits a neutral one-dimensional polymeric structure containing two types of [Fe(bipy)(CN)(4)](-) units acting as bismonodentate (Fe(1)) and trismonodentate (Fe(2)) ligands versus the divalent zinc cations through two cis-cyanide (Fe(1)) and three fac-cyanide (Fe(2)) groups. The environment of the iron atoms in 4 is distorted octahedral as in 1-3, whereas the zinc atom is pentacoordinated with five cyanide nitrogen atoms, describing a very distorted square pyramid. The iron-zinc separations across the single bridging cyanides are 5.013(1) and 5.142(1) A at Fe(1) and 5.028(1), 5.076(1), and 5.176(1) A at Fe(2). The magnetic properties of 1-3 have been investigated in the temperature range 2.0-300 K. 1 is a low-spin iron(III) complex with an important orbital contribution. The magnetic properties of 3 correspond to the sum of two magnetically isolated spin triplets, the antiferromagnetic coupling between the low-spin iron(III) centers through the -CN-Zn-NC- bridging skeleton (iron-iron separation larger than 10 A) being very weak. More interestingly, 2 exhibits a significant intramolecular antiferromagnetic interaction between the central spin sextet and peripheral spin doublets, leading to a low-lying spin quartet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号