首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
设计合成了一种新型的基于5-芳基-2-巯基噁二唑辅助配体的双核环金属铂配合物(dfppy)2Pt2(C8OXT)2,其中dfppy为2-(4,6-二氟苯基)吡啶,C8OXT为5-苯基-2-巯基-1,3,4-噁二唑桥连配体.系统研究了该双核铂配合物(dfppy)2Pt2(C8OXT)2的热稳定性、光物理、电化学及电致发光性能.以(dfppy)2Pt2(C8OXT)2作为客体掺杂到聚合物主体材料中制备了单发光层聚合物电致发光器件.器件展现了饱和的红光发射,其最大发射峰为620nm.当配合物掺杂浓度为8wt%时,器件性能达到最好.其最高外量子效率为8.4%,最高电流效率为4.2cd/A,最大亮度为3228cd/m2.本研究表明,以5-苯基-2-巯基-1,3,4-噁二唑作为桥连配体的双核铂配合物在聚合物器件中能够实现高效红光发射.  相似文献   

2.
A novel bi-picolinic acid derivative of H2dipic-BTICz containing binary triphenylamine-substituted indolo[3,2-b]carbazole (BTICz) unit and its dinuclear platinum(II) complex of (dfppy)2Pt2(dipic-BTICz) were synthesized as a single-component emitter used in the white polymer light-emitting diodes (WPLEDs), where dfppy is 2-(2,4-difluorophenyl)pyridine and dipic-BTICz is an anion of H2dipic-BTICz. The photophysical and electrochemical properties of (dfppy)2Pt2(dipic-BTICz) were investigated. Compared with the reported mononuclear platinum complex of (dfppy)Pt(pic), (dfppy)2Pt2(dipic-BTICz) exhibited a red-shifted photoluminescent peak at 434 nm in dilute dichloromethane (10−5 M), but a weakened and red-shifted aggregation emission peak at 640 nm besides its intrinsic emission at 445 nm in its neat films. Stable pure white emissions with CIE coordinates of (0.325±0.005, 0.345±0.015) and a maximum brightness of 208 cd/m2 were observed in the (dfppy)2Pt2(dipic-BTICz)-doped single-emissive-layer (SEL) PLEDs using a blend of poly(vinylcarbazole) and 2-(4-biphenyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole as a host matrix at 1 wt % dopant concentrations under applied voltages from 9 to 14 V. It indicates that the intrinsic and aggregation emissions of this dinuclear platinum complex were effectively tuned by inserting a new BTICz fluorophore in the dual picolinic acid derivative. Therefore, it is a promising single-component emitter to get white emission in SEL PLEDs.  相似文献   

3.
A dinuclear platinum(II) complex of (dfppy)2Pt2(dipic) has been prepared, where dfppy is 2,4-difluorophenylpyridine and dipic is a biphenyl-bridged bi-picolinic acid derivative. Its physical and optoelectronic properties, as well as molecular orbitals calculation have been investigated and compared with those of its mono-nuclear (dfppy)Pt(pic) complex. Both platinum(II) complexes exhibited almost identical photoluminescence (PL) spectra with deep blue emission in dilute dichloro-methane (10−5 M) and different PL spectra with red emission in their neat films. Stable white emissions were obtained in the (dfppy)2Pt2(dipic)-doped polymer light-emitting devices using a blend of poly(vinylcarbazole) and 2-(4-biphenyl)-5-(4-tert-butyl-phenyl)-1,3,4-oxadiazole as a host matrix at dopant concentrations from 1 wt % to 10 wt %. In contrast, the (dfppy)Pt(pic)-doped devices exhibited orange-red emissions in the same device configuration. It indicates that dinuclear platinum(II) complex with a non-planar structure is an effective way to control formation excimers of platinum(II) complex and get white-emitting PLEDs with single dopant.  相似文献   

4.
Light-emitting electrochemical cells (LECs) are a promising type of electroluminescent device for display and lighting applications. In this study, LECs based on ionic iridium complexes utilizing a tetrazole based ancillary ligand were fabricated and their electrical properties were investigated. Two new iridium(III) complexes with tetrazole based ancillary ligands, namely, [Ir(ppy)2(tetrazole)]PF6 (complex 1) and [Ir(dfppy)2(tetrazole)]PF6 (complex 2) (where ppy is 2-phenylpyridine, dfppy is 2-(2,4-difluorophenyl)pyridine, tetrazole is 5-bromo-2-(2-methyl-2H-tetrazol-5-yl)-pyridine and PF6 is hexafluorophosphate), have been synthesized and characterized. These synthesized complexes were used for the fabrication of LEC devices. LECs based on complex 1 result in orange light emission (576 nm) with the Commission Internationale de l’Eclairage (CIE) coordinates of (0.45, 0.49), while complex 2 emits green (518 nm) electroluminescence with the CIE coordinates of (0.33, 0.49). Our work suggests that the light emission of cationic iridium complexes can easily be tuned by the substituents on the cyclometalated ligands.  相似文献   

5.
The reaction of a mixture of cis and trans-[PtCl2(SMe2)2] with 4,7-phen (4,7-phen = 4,7-phenanthroline) in a molar ratio of 1 : 1 or 2 : 1 resulted in the formation of mono and binuclear complexes trans-[PtCl2(SMe2)(4,7-phen)] (1) and trans-[Pt2Cl4(SMe2)2(μ-4,7-phen)] (2), respectively. The products have been fully characterized by elemental analysis, 1H, 13C{1H}, HHCOSY, HSQC, HMBC, and DEPT-135 NMR spectroscopy. The crystal structure of 1 reveals that platinum has a slightly distorted square planar geometry. Both chlorides are trans with a deviation from linearity 177.66(3)°, while the N–Pt–S angle is 175.53(6)°. Similarly, the reaction of a mixture of cis and trans-[PtBr2(SMe2)2] with 4,7-phen in a 1 : 1 or 2 : 1 mole ratio afforded the mono or binuclear complexes trans-[PtBr2(SMe2)(4,7-phen)] (3) and trans-[Pt2Br4(SMe2)2(μ-4,7-phen)] (4), respectively. The crystal structure of trans-[Pt2Br4(SMe2)2(μ-4,7-phen)].C6H6 reveals that 4,7-phen bridges between two platinum centers in a slightly distorted square planar arrangement of the platinum. In this structure, both bromides are trans, while the PtBr2(SMe2) moieties are syn to each other. NMR data of mono and binuclear complexes of platinum 14 show that the binuclear complexes exist in solution as a minor product, while the mononuclear complexes are major products.  相似文献   

6.
A new one‐dimensional platinum mixed‐valence complex with nonhalogen bridging ligands, namely catena‐poly[[[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(II)]‐μ‐thiocyanato‐κ2S:S‐[bis(ethane‐1,2‐diamine‐κ2N,N′)platinum(IV)]‐μ‐thiocyanato‐κ2S:S] tetrakis(perchlorate)], {[Pt2(SCN)2(C2H8N2)4](ClO4)4}n, has been isolated. The PtII and PtIV atoms are located on centres of inversion and are stacked alternately, linked by the S atoms of the thiocyanate ligands, forming an infinite one‐dimensional chain. The PtIV—S and PtII...S distances are 2.3933 (10) and 3.4705 (10) Å, respectively, and the PtIV—S...PtII angle is 171.97 (4)°. The introduction of nonhalogen atoms as bridging ligands in this complex extends the chemical modifications possible for controlling the amplitude of the charge‐density wave (CDW) state in one‐dimensional mixed‐valence complexes. The structure of a discrete PtIV thiocyanate compound, bis(ethane‐1,2‐diamine‐κ2N,N′)bis(thiocyanato‐κS)platinum(IV) bis(perchlorate) 1.5‐hydrate, [Pt(SCN)2(C4H8N2)2](ClO4)2·1.5H2O, has monoclinic (C2) symmetry. Two S‐bound thiocyanate ligands are located in trans positions, with an S—Pt—S angle of 177.56 (3)°.  相似文献   

7.
Synthesis and spectroscopic studies in the solid-state of a platinum(II) complex with N-acetyl-L-cysteine are described. Elemental analyses are consistent with composition Pt2(C5H8NO3S)4 · 3H2O. Solid-state 13C NMR, infrared, and U-Vis spectroscopic results are consistent with coordination of the ligand to platinum(II) through sulfur. Thermal analyses confirmed water in the complex composition. Final residue of the thermal treatment was identified by powder X-ray diffractometry as metallic platinum.  相似文献   

8.
The syntheses, crystal structures, and detailed investigations of the photophysical properties of phosphorescent platinum(II) Schiff base complexes are presented. All of these complexes exhibit intense absorption bands with λmax in the range 417–546 nm, which are assigned to states of metal‐to‐ligand charge‐transfer (1MLCT) 1[Pt(5d)→π*(Schiff base)] character mixed with 1[lone pair(phenoxide)→π*(imine)] charge‐transfer character. The platinum(II) Schiff base complexes are thermally stable, with decomposition temperatures up to 495 °C, and show emission λmax at 541–649 nm in acetonitrile, with emission quantum yields up to 0.27. Measurements of the emission decay times in the temperature range from 130 to 1.5 K give total zero‐field splitting parameters of the emitting triplet state of 14–28 cm?1. High‐performance yellow to red organic light‐emitting devices (OLEDs) using these platinum(II) Schiff base complexes have been fabricated with the best efficiency up to 31 cd A?1 and a device lifetime up to 77 000 h at 500 cd m?2.  相似文献   

9.
For the purpose of making hyperbranched polymer (Hb‐Ps)‐based red, green, blue, and white polymer light‐emitting diodes (PLEDs), three Hb‐Ps Hb‐ terfluorene ( Hb‐TF ), Hb ‐4,7‐bis(9,9′‐dioctylfluoren‐2‐yl)‐2,1,3‐benzothiodiazole ( Hb‐BFBT ), and Hb‐ 4,7‐bis[(9,9′‐dioctylfluoren‐2‐yl)‐thien‐2‐yl]‐2,1,3‐benzothiodiazole ( Hb‐BFTBT ) were synthesized via [2+2+2] polycyclotrimerization of the corresponding diacetylene‐functionalized monomers. All the synthesized polymers showed excellent thermal stability with degradation temperature higher than 355 °C and glass transition temperatures higher than 50 °C. Photoluminance (PL) and electroluminance (EL) spectra of the polymers indicate that Hb‐TF , Hb‐BFBT , and Hb‐BFTBT are blue‐green, green, and red emitting materials. Maximum brightness of the double‐layer devices of Hb‐TF , Hb‐BFBT , and Hb‐BFTBT with the device configuration of indium tin oxide/poly(3,4‐ethylene dioxythiophene):poly(styrene sulfonate)/light‐emitting polymer/CsF/Al are 48, 42, and 29 cd/m2; the maximum luminance efficiency of the devices are 0.01, 0.02, and 0.01 cd/A. By using host–guest doped system, saturated red electrophosphorescent devices with a maximum luminance efficiency of 1.61 cd/A were obtained when Hb‐TF was used as a host material doped with Os(fptz)2(PPh2Me2)2 as a guest material. A maximum luminance efficiency of 3.39 cd/A of a red polymer light‐emitting device was also reached when Hb‐BFTBT was used as the guest in the PFO (Poly(9,9‐dioctylfluorene)) host layer. In addition, a series of efficient white devices were, which show low turn‐on voltage (3.5 V) with highest luminance efficiency of 4.98 cd/A, maximum brightness of 1185 cd/m2, and the Commission Internationale de l'Eclairage (CIE) coordinates close to ideal white emission (0.33, 0.33), were prepared by using BFBT as auxiliary dopant. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

10.
The synthesis, structure, electrochemistry, and photophysical properties of a series of heteroleptic tris‐ cyclometalated PtIV complexes are reported. The complexes mer‐[Pt(C^N)2(C′^N′)]OTf, with C^N=C‐deprotonated 2‐(2,4‐difluorophenyl)pyridine (dfppy) or 2‐phenylpyridine (ppy), and C′^N′=C‐deprotonated 2‐(2‐thienyl)pyridine (thpy) or 1‐phenylisoquinoline (piq), were obtained by reacting bis‐ cyclometalated precursors [Pt(C^N)2Cl2] with AgOTf (2 equiv) and an excess of the N′^C′H pro‐ligand. The complex mer‐[Pt(dfppy)2(ppy)]OTf was obtained analogously and photoisomerized to its fac counterpart. The new complexes display long‐lived luminescence at room temperature in the blue to orange color range. The emitting states involve electronic transitions almost exclusively localized on the ligand with the lowest π–π* energy gap and have very little metal character. DFT and time‐dependent DFT (TD‐DFT) calculations on mer‐[Pt(ppy)2(C′^N′)]+ (C′^N′=thpy, piq) and mer/fac‐[Pt(ppy)3]+ support this assignment and provide a basis for the understanding of the luminescence of tris‐cyclometalated PtIV complexes. Excited states of LMCT character may become thermally accessible from the emitting state in the mer isomers containing dfppy or ppy as chromophoric ligands, leading to strong nonradiative deactivation. This effect does not operate in the fac isomers or the mer complexes containing thpy or piq, for which nonradiative deactivation originates mainly from vibrational coupling to the ground state.  相似文献   

11.
Abstract

Mixed-valent tetranuclear platinum complex, [Pt4(NH3)8(C4H6NO)4] n+ (n = 4, 5, 6, 8; C4H6NO = deprotonated α-pyrrolidone), is used as a homogeneous hydrogen-producing catalyst in a photochemical model system containing EDTA as an electron donor, Ru(bpy)3 2+ as a sensitizer and methylviologen (MV2+) as an electron relay.  相似文献   

12.
A series of dinuclear cycloplatinated(II) complexes with general closed formula of [Pt2Me2(C^N)2(μ‐P^P)] (C^N = 2‐vinylpyridine (Vpy), 2,2′‐bipyridine N‐oxide (O‐bpy), 2‐(2,4‐difluorophenyl)pyridine (dfppy); P^P = 1,1‐bis(diphenylphosphino)methane (dppm), N,N‐bis(diphenylphosphino)amine (dppa)) are reported. The complexes were characterized by means of NMR spectroscopy. Due to the presence of dppm and dppa with short backbones as bridging ligands, two platinum centres are located in front of each other in these complexes so a Pt…Pt interaction is established. Because of this Pt…Pt interaction, the complexes have bright orange colour under ambient light and are able to strongly emit red light under UV light exposure. These strong red emissions originate from a 3MMLCT (metal–metal‐to‐ligand charge transfer) electronic transition. In most of these complexes, the emissions have unstructured bell‐shaped bands, confirming the presence of large amount of 3MMLCT character in the emissive state. Only the complexes bearing dfppy and dppa ligands reveal dual luminescence: a high‐energy structured emission originating from 3ILCT/3MLCT (intra‐ligand charge transfer/metal‐to‐ligand charge transfer) and an unstructured low‐energy band associated with 3MMLCT. In order to describe the nature of the electronic transitions, density functional theory calculations were performed for all the complexes.  相似文献   

13.
Reaction of [Pt2Cl2(μ-dppm)2] with ligands, L, in the presence of [PF6- gave stable cationic diplatinum(I) complexes [Pt2L2(μ-dppm)2][PF6]2 where L = PMe2Ph, PMePh2, PPh3, NH3, C5H5N. Reaction of [Pt2(NH3)2(μ-dppm)2][PF6]2 with CO gave [Pt2(CO)2(μ-dppm)2][PF6]2 and an unsymmetrical complex [Pt2(CO)(C5H5N)(μ-dppm)2][PF6]2 was also prepared. The compounds were characterized by vibrational and 1H and 31P NMR spectroscopy and the presence of direct platinumplatinum bonds is indicated.  相似文献   

14.
Red phosphorescent iridium(III) complexes based on fluorine‐, phenyl‐, and fluorophenyl‐substituted 2‐arylquinoline ligands were designed and synthesized. To investigate their electrophosphorescent properties, devices were fabricated with the following structure: indium tin oxide (ITO)/4,4′,4′′‐tris[2‐naphthyl(phenyl)amino]triphenylamine (2‐TNATA)/4,4′‐bis[N‐(1‐naphthyl)‐N‐phenylamino]biphenyl (NPB)/4,4′‐bis(N‐carbazolyl)‐1,1′‐biphenyl (CBP): 8 % iridium (III) complexes/bathocuproine (BCP)/tris(8‐hydroxyquinolinato)aluminum (Alq3)/8‐hydroxyquinoline lithium (Liq)/Al. All devices, which use these materials showed efficient red emissions. In particular, a device exhibited a saturated red emission with a maximum luminance, external quantum efficiency, and luminous efficiency of 14200 cd m?2, 8.44 %, and 6.58 cd A?1 at 20 mA cm?2, respectively. The CIE (x, y) coordinates of this device are (0.67, 0.33) at 12.0 V.  相似文献   

15.
The reaction of platinum(II) chloride with 1,2,4‐trichlorobenzene gives the novel platinum complex Pt6Cl12·(1,2,4‐C6H3Cl3). It is the first example of an cocrystallization product of platinum(II) chloride and organic molecules whose crystal structure has been established.  相似文献   

16.
The thermal decomposition of the binuclear Pt(II) complexes with acetate, propionate, valerate and izovalerate ligands were studied by TG and DTA techniques. The Pt(II) complex with acetic acid (PtAA) was stable up to 343.15 K, Pt(II) complex with propionic acid (PtPrA) was stable up to 323.15 K, Pt(II) complex with valeric acid (PtVA) was stable up to T=313.15 K and Pt(II) complex with isovaleric acid (PtIvA) was stable up to 408.15 K. The PtAA complex was investigated again after a year by thermogravimetric analysis. After the thermal decomposition of the Pt(II) complexes with carboxylic acids, only in the PtVA complex and PtAA complex (investigated after a year) the final residue contains only platinum, while in the rest complexes the solid residue was a mixture of platinum and platinum carbides (PtC2, Pt2C3).  相似文献   

17.
骆开均  蒋世平  张藜芳  朱卫国  王欣 《应用化学》2011,28(10):1155-1160
在聚2,7-(9,9-二辛基)芴(PFO)和30%的2-(对联苯基)-5-(对叔丁基苯基)-1,3,4-噁二唑(PBD)主体材料中掺杂短磷光寿命的meso-四(对正葵酰氧基苯基)卟啉铂(TDPPPt),制成聚合物基发光器件。 器件结构为:ITO/PEDOT∶PSS/PVK/PFO+30%PBD∶TDPPPt/Ca/Al(ITO:氧化铟锡;PEDOT:聚3,4-乙撑二氧噻吩;PSS:聚苯乙烯磺酸盐;PVK:聚乙烯基咔唑)。 当客体掺杂浓度≥3%时,器件给出饱和的红色发射。 当驱动电压从7 V升高至14 V时,器件发光色度保持不变,CIE(国际发光照明委员会)色坐标稳定在(0.66,0.28)左右。 器件的最大亮度和电流效率分别为1.390 cd/m2和1.34 cd/A。 在电流密度100×10-3和150×10-3 A/cm2时,电流效率分别为1.18和0.99 cd/A,器件在高电流密度下具有良好的稳定性。  相似文献   

18.
一种双核铕配合物的合成、光致发光和电致发光性质研究   总被引:5,自引:0,他引:5  
合成了一个新的双核铕配合物Eu(TTA)3(tpphz)Eu(TTA)3(其中TTA=去质子化的α-噻吩甲酰三氟丙酮; tpphz=[3,2-a:2',3'-c:3',2'-h:2'',3''-j]四吡啶基吩嗪). 研究了该配合物的光致发光和电致发光性质. 一个四层电致发光器件ITO/TPD, 10 nm/Eu(TTA)3(tpphz)Eu(TTA)3, 20 nm/BCP, 20 nm/AlQ, 40 nm/Mg0.9Ag0.1, 200 nm/Ag, 100 nm表现出中心在633 nm处的宽带红光发射, 该宽带发射可能来源于双核Eu(III)配合物和TPD形成的激基复合物. 该器件的启动电压为10 V, 在18 V和135 mA/cm2时的最大亮度达146 cd/m2.  相似文献   

19.
In the title compounds, [PtCl2(C3H10N2)], (I), [PdCl2(C3H10N2)], (II), and [Pt2Cl4(C10H26N4)], (III), each metal atom lies in a distorted cis‐square coordination geometry. Compounds (I) and (II) are isostructural, and each complex has a mirror plane through the metal atom and the middle C atom of the propane‐1,3‐diamine ligand. In (III), the binuclear complex [Pt2Cl4(spn)] has an inversion center at the middle of the 4,9‐diaza­dodecane‐1,12‐diamine (spermine, spn) ligand. The six‐membered chelate rings in (III) adopt a chair form, which is unsymmetrical and less flattened than those in (I) and (II). In all three crystal structures, there are inter­molecular N—H⋯Cl hydrogen bonds.  相似文献   

20.
A series of fluorene-alt-oxadiazole copolymers containing a pendent phosphor chromophore of the (piq)2Ir(pic) complex were synthesized via the palladium-catalyzed Suzuki coupling reaction, where piq is 1-phenylisoquinoline and pic is picolinic acid. These copolymers exhibited a similar absorption spectrum with a peak at about 330 nm and a typical emission peak at 408 nm in CH2Cl2 from the fluorene-alt-oxadiazole backbone. However, a significantly red-shifted emission peak at about 625 nm was observed in the neat films of these copolymers, which are attributed to the pendent iridium (III) complex unit. Using these copolymers as single emission layer, the polymer light-emitting devices with a configuration of ITO/PEDOT:PSS/copolymers/LiF/Al exhibited a saturated red emission with a peak at 632 nm. Significant influence of the attached iridium (III) complex ratio on EL performance was presented. A maximum current efficiency of 1.2 cd/A at 63 mA/cm2 and a maximum luminance of 1125 cd/m2 at 12 V were achieved from the device with the copolymer containing iridium (III) complex in a 3% molar ratio.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号